北考网

《圆的方程》的课堂教案设计

时间:2023-06-02 10:16:56 文/刘莉莉 教案北考网www.beiweimall.com

《圆的方程》的课堂教案设计

  1、教学目标

  (1)知识目标:

  a、在平面直角坐标系中,探索并掌握圆的标准方程;

  b、会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程;

  c、利用圆的方程解决与圆有关的实际问题。

  (2)能力目标:

  a、进一步培养学生用解析法研究几何问题的能力;

  b、使学生加深对数形结合思想和待定系数法的理解;

  c、增强学生用数学的意识。

  (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣。

  2、教学重点、难点

  (1)教学重点: 圆的标准方程的求法及其应用。

  (2)教学难点:

  ①会根据不同的已知条件,利用待定系数法求圆的标准方程

  ②选择恰当的坐标系解决与圆有关的实际问题。

  3、教学过程

  (一)创设情境(启迪思维)

  问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

  [引导]:画图建系

  [学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

  解:以某一截面半圆的圆心为坐标原点,半圆的直径AB所在直线为x轴,建立直角坐标系,则半圆的方程为x2+y2=16(y≥0)

  将x=2.7代入,得

  即在离隧道中心线2。7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

  (二)深入探究(获得新知)

  问题二:

  1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?

  答:x2+y2=r2

  2、如果圆心在,半径为时又如何呢?

  [学生活动]:探究圆的方程。

  [教师预设]:方法一:坐标法

  如图,设M(x,y)是圆上任意一点,根据定义点M到圆心C的距离等于r,所以圆C就是集合P={M||MC|=r}

  由两点间的距离公式,点M适合的条件可表示为①

  把①式两边平方,得(x―a)2+(y―b)2=r2

  方法二:图形变换法

  方法三:向量平移法

  (三)应用举例(巩固提高)

  I直接应用(内化新知)

  问题三:

  1、写出下列各圆的方程(课本P77练习1)

  (1)圆心在原点,半径为3;

  (2)圆心在,半径为

  (3)经过点,圆心在点

  2、根据圆的方程写出圆心和半径

  II灵活应用(提升能力)

  问题四:

  1、求以为圆心,并且和直线相切的圆的方程。

  [教师引导] 由问题三知:圆心与半径可以确定圆。

  2、求过点,圆心在直线上且与轴相切的圆的方程。

  [教师引导] 应用待定系数法寻找圆心和半径。

  3、已知圆的方程为,求过圆上一点的切线方程。

  [学生活动] 探究方法

  [教师预设]

  多媒体课件演示:

  方法一:待定系数法(利用几何关系求斜率—垂直)

  方法二:待定系数法(利用代数关系求斜率—联立方程)

  方法三:轨迹法(利用勾股定理列关系式)

  方法四:轨迹法(利用向量垂直列关系式)

  4、你能归纳出具有一般性的结论吗?

  已知圆的方程是,经过圆上一点的切线的方程是:

  III实际应用(回归自然)

  问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0。01m)。

  [多媒体课件演示创设实际问题情境]

  (四)反馈训练(形成方法)

  问题六:1、求以C(—1,—5)为圆心,并且和y轴相切的圆的方程。

  2、已知点A(—4,—5),B(6,—1),求以AB为直径的圆的方程。

  3、求过点且圆心在直线上的圆的标准方程。

  4、求圆x2+y2=13过点P(—2,3)的切线方程。

  5、已知圆的方程为,求过点的切线方程。

  (五)小结反思(拓展引申)

  1、课堂小结:

  (1)知识性小结:

  ①圆心为C(a,b),半径为r 的圆的标准方程为:

  当圆心在原点时,圆的标准方程为:

  ②已知圆的方程是,经过圆上一点的切线的方程是:

  (2)方法性小结:

  ①求圆的方程的方法:

  I找出圆心和半径;

  II待定系数法

  ②求解应用问题的一般方法

  2、分层作业:

  (A)巩固型作业:课本P81—82:(习题7.6)1、2、4

  (B)思维拓展型作业:

  试推导过圆上一点的切线方程。

  3、激发新疑:

  问题七:

  1、把圆的标准方程展开后是什么形式?

  2、方程:的曲线是什么图形?

  设计说明

  圆是学生比较熟悉的曲线。初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点就放在了用解析法研究它的方程和圆的.标准方程的一些应用上。首先,在已有圆的定义和求曲线方程的一般步骤的基础上,用实际问题引导学生探究获得圆的标准方程,然后,利用圆的标准方程由潜入深的解决问题,并通过最终在实际问题中的应用,增强学生用数学的意识。另外,为了培养学生的理性思维,我分别在引例和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成。

  本节课的设计了五个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、我的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想,应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时提锻炼了思维、提高了能力、培养了兴趣、增强了信心。

相关文章

小池塘优秀教案设计2023-06-12 11:16:22

看谁跳得好教案范文2023-06-19 07:57:11

让我们选择坚强精品教案2023-06-15 10:05:24

中班语言活动好心的小蛇教案2023-06-18 14:45:29

小班科学甜甜的西瓜教案2023-06-19 05:49:33

撕报纸游戏的大班活动教案2023-06-13 05:22:58

上海对外经贸大学和北京交通大学(威海校区)对比哪个好(排名分数线区2024-03-31 16:25:18

河北高考排名237950名物理能上什么大学(能报哪些学校)2024-03-31 16:19:23

山东城市建设职业学院在山东招生人数和招生计划 多少人2024-03-31 16:15:16

上海农林职业技术学院在湖南招生人数和招生计划 多少人2024-03-31 16:12:52

吉林农业科技学院在湖南招生人数和招生计划 多少人2024-03-31 16:09:19

安徽高考多少分可以上云南经贸外事职业学院 招生人数和最低分2024-03-31 16:04:52

幼儿园中班主题活动玩小货车教案2023-06-10 14:41:20

中班科学公开课教案及教学反思和电池做游戏2023-06-02 15:17:40

找最小公倍数教学教案2023-06-06 05:11:13