福建中考数学考点归纳
1、在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。固定的端点O叫做圆心,线段OA叫做半径
圆上各点到定点的距离都等于定长
到定点的距离等于定长的点都在同个平面上
因此,圆心为O、半径为r的圆可以看成所有到定点O距离等于定长r的点的集合
2、弧、弦、圆心角
弧:圆上任意两点间的部分叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆
弦:连接圆上任意两点的线段,叫做弦。经过圆心的弦,叫做直径
圆心角:顶点在圆心的角
圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴
圆是中心对称图形,圆心O是它的对称中心
3、圆周角
顶点在圆上,并且两边都圆相交的角叫做圆周角。
4、圆周角定理
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半
推论:
半圆(或直径)所对的圆周角是直角,90度的圆周角所对应的弦是直径。
推论:
圆的内接四边形对角之和为180度
注意:对内接四边形的判定,必须4个顶点都在圆上。
5、点和圆的位置关系
点P在圆内d点P在圆上d=r
点P在圆外d>r
6、不在同一直线上的三个点确定一个圆
注意:不在同一直线这一要点
经过三角形的三个顶点可以做一个圆,这个圆叫作三角形的外接圆
外接圆的圆心是三角形三条边垂直平分线的交点,叫作这个三角形的外心
特殊的:直角△的外心在斜边上的中点。
一般求△外心的题往往是直角△或者等腰△,等腰△请结合垂径定理和勾股定理
7、直线和圆的位置关系
直线l和圆O相交(有两个公共点)d直线l和圆O相切(有一个公共点)d=r直线为切线,点为切点
直线l和圆O相离(没有公共点)d>r
8、切线的判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线
在灵活运用该定理的同时,切莫忘记第三大点中的判定方法!(往往在出现角平分线、等腰三角形的场所,我们需要用到此方法去判定相切)
9、切线的性质定理
圆的切线垂直于过切点的半径
这两个定理的运用:前者是不清楚直线与圆的关系,进行判断。后者是已知直线与圆相切,进行性质分析。
10、切线长定理
经过圆外一点作过圆的切线,这点和切点之间的线段的长,叫作这点到圆的切线长
从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。这个定理叫作切线长定理。
中考数学考点分析
1、三角形的的内心
与三角形各边都相切的圆叫做三角形的内切圆。
内切圆的圆心是三角形三条角一部分线的交点,叫作三角形的内心。
注意内心外心的区别和应用。三角形的内心必然在△内部,外心则有可能在外部
内切圆半径的计算方法
三角形面积=内切圆半径_三角形周长/2
2、点和圆的位置关系
点P在圆内d点P在圆上d=r
点P在圆外d>r
3、三个相等:
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
在同圆或等圆中,如果两两弧相等,那么它们所对应的圆心角相等,所对的弦相等。
在同圆或等圆中,如果两条弦相等,那么它们所对应的圆心角相等,所对的弧相等。
4、直线和圆的位置关系
直线与圆相交(两个交点)d直线与圆相切(一个交点)d=r
直线与圆相离(没有交点)d>r
5、圆和圆的位置关系
圆与圆相交(两个交点)R-r圆与圆相切(一个交点)d=R-r(内切)d=R+r(外切)
圆与圆外离(没有交点)d>R+r
圆与圆内含(没有交点)d还一种最特殊情况,同心圆d=0
注意:相切一定要看清楚,是内切还是外切,还是两种都可能
学生可尝试画一个数轴区域示意图
6、对圆而言,请注重其对称性
相切的两个圆,不论内切外切,显然,切点和两个圆心应该在同一直线上。
7、扇形的弧长及面积
扇形:由两条半径及两条半径组成的角对应的弧形成的图形
扇形弧长:
注意区别弧长与周长
扇形面积
弧长及面积的关系
8、正多边形
正多边形:各边长相等,各顶角相等的多边形
我们把一个正多边形的外接圆的圆心叫做这个正多边形的中心
外接圆的半径叫做正多边形的半径
正多边形的每一边所对的圆心角叫做正多边形的中心角
中心到正多边形的一边的距离叫做正多边形的边心距
正多边形的计算:遵循每条边所对应的圆心角的度数为360/n即可,利用垂径定理,等腰三角形进行解答。
9、圆锥的侧面积和全面积
圆锥是由一个底面和一个侧面围成的
我们把连接圆锥顶点和底边圆周上任意一点的线段叫做圆锥的母线
圆锥的侧面展开图是一个扇形。设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为,因此圆锥的侧面积为,圆锥的全面积为
圆锥侧面展开扇形的中心角可通过此扇形的弧长及半径,进行计算
10、把一个图形绕某一点O转动一个角度的图形变换叫做旋转。
点O叫做旋转中心,转动的角叫做旋转角。
如果图形上的P经过旋转变为点P’,那么这两个点叫做这个旋转的对应点
把一个图形绕着某一个点旋转180度
如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。
中考数学考点归纳
1、“三线八角”:两条直线被第三条直线所截而成的八个角。其中,
同位角:位置相同,及同旁和同规;
内错角:内部,两旁;
同旁内角:内部,同旁。
2、平行线的判定方法:
1)同位角相等,两直线平行
2)内错角相等,两直线平行
3)同旁内角互补,两直线平行
3、平行线的性质:
1)两直线平行,同位角相等
2)两直线平行,内错角相等
3)两直线平行,同旁内角互补
4、三角形的分类:
1)按角分:锐角三角形、直角三角形、钝角三角形
2)按边分:等腰三角形、不等边三角形
5、三角形的性质:
1)三角形中任意两边之和大于第三边,任意两边只差小于第三边
2)三角形内角和为180o
3)三角形外角等于与之不相邻的两个内角的和
6、三角形中的主要线段:
1)三角形的中位线:连接三角形两边中点的线段
中位线性质:中位线平行于第三边,且等于第三边的一半。
2)三角形的中线、高线、角平分线都是线段
7、等腰三角形的性质和判定:
1)等腰三角形的两个底角相等
2)等腰三角形底边上的高、中线、顶角的角平分线互相重合,简称三线合一
3)有两个角相等的三角形是等腰三角形
8、等边三角形的性质和判定:
1)等边三角形每个角都等于60o,同样具有三线合一的性质
2)三个角相等的三角形是等边三角形;三边相等的三角形是等边三角形;一个角等于60o的等腰三角形是等边三角形
9、直角三角形的性质和判定:
1)直角三角形两个锐角和为90o(互余)
2)直角三角形中30o所对的直角边等于斜边的一半
3)直角三角形中,斜边的中线等于斜边的一半
4)勾股定理:直角三角形中,两直角边的平方和等于斜边的平方
5)勾股定理的逆定理:若一个三角形中,有两边的平方和等于第三边的平方,则这个三角形是直角三角形
10、全等三角形:
1)对应边相等,对应角相等的三角形叫全等三角形
2)全等三角形的判定方法:SSS、SAS、ASA、AAS、HL
【观察这五种方法发现,要证三角形全等,至少要有一组相等的边,因此在应用是要养成先找边的习惯】
3)全等三角形的性质:全等三角形的对应边、对应角、面积、周长、对应高、对应中线、对应角平分线都相等
相关文章
中考政治知识点之祖国统一考什么2023-06-08 03:45:51
把2023-06-04 08:07:13
中考作文600字大全五篇2023-06-02 02:55:25
北京初中生物考点2023-06-18 17:29:25
初三家长会老师发言稿五篇2023-06-09 18:47:04
湖南初中地理常考考点2023-06-16 11:17:27
上海对外经贸大学和北京交通大学(威海校区)对比哪个好(排名分数线区2024-03-31 16:25:18
河北高考排名237950名物理能上什么大学(能报哪些学校)2024-03-31 16:19:23
山东城市建设职业学院在山东招生人数和招生计划 多少人2024-03-31 16:15:16
上海农林职业技术学院在湖南招生人数和招生计划 多少人2024-03-31 16:12:52
吉林农业科技学院在湖南招生人数和招生计划 多少人2024-03-31 16:09:19
安徽高考多少分可以上云南经贸外事职业学院 招生人数和最低分2024-03-31 16:04:52
达州中考录取率多少,各高中录戎数线统计2023-06-06 21:56:40
广安中考录取率多少,各高中录戎数线统计2023-06-08 08:54:58
宜宾中考录取率多少,各高中录戎数线统计2023-06-19 04:31:29