初中数学知识点:相似图形
相似图形:
如果两个图形形状相同,但大小不一定相等,那么称这两个图形相似。
相似比:
相似多边形对应边的比。
注:
(1)相似比是有顺序的;
(2)全等三角形是相似比为1的两个相似三角形。
主要性质:
1.对应内角相等
2.两个图形对应边成比例
如果是正方形,则只要边长成比例就可以,所以所有的正方形,正三角形都相似
长方形是长和高对应成比例
3.相似多边形的周长比等于相似比,面积比等于相似比的平方。
相似图形基本法则:
1. 如果选用同一个长度单位量得的两条线段AB,CD的长度分别是m,n那么就说这两条线段的比AB:CD=m:n,或写成AB/CD=m/n。
分别叫做这个线段比的前项后项。
2. 在地图或工程图纸上,图上长度与实际长度的比通常称为比例尺。
3. 四条线段a,b,c,d中,如果a与b的比等于c与d的比,即a/b=c/d,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段。
4. 如果a/b=c/d,那么ad=bc. 如果ad=bc(a,b,c,d都不等于0),那么a/b=c/d.
5. 如果a/b=c/d,那么(a±b)/b=(c±d)/d;那么(a±kb)/b=(c±kd)/d;那么a/b±ka=c/d±kc
6如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b.
7 如果AC/AB=BC/AC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,(√5-1)/2叫做黄金比。
8. 长于宽的比等于黄金比的矩形叫做黄金矩形。
9. 三角形ABC与三角形A’B’C’是形状形同的图形,其中10 各角对应相等、各边对应成比例的两个多边形叫做相似多边形。
11.相似多边形的比叫做相似比。
12.三角对应相等,三边对应成比例的两个三角形叫做相似三角形。若三角形ABC与三角形DEF相似,记作:
△ ABC∽△DEF,把对应顶点的字母写在相应的位置上
13.探索三角形相似的条件:
① 两角对应相等的两个三角形相似。
② 三边对应成比例的两个三角形相似。
③ 两边对应成比例且夹角相等的两个三角相似。
14.相似多边形的性质:
① 相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比。
② 相似多边形的周长比等于相似比,面积比等于相似比的平方(或相似比等于面积比的算术平方根)。
15.如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。
16.位似图形上任一对对应点到位似中心的距离之比和周长比等于位似比,且面积比等于位似比的平方
对应角相等,各边对应成比例的两个多边形叫做相似多边形。相似多边形对应边的比叫做相似比。
17. 相似具有方向性与传递性。
18.位似是特殊的相似。
初中数学知识点:比例的性质
比例:
在数学中,比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体的构成或者结构。两种相关联的量,一种量变化,另一种量也随着变化。要想判断两个比式子能不能组成比例,要看它们的比例是不是相等。
比例性质:
比例的基本性质:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
比例性质是代数学中常用的分式性质,主要包括合比性质、分比性质、合分比性质、等比性质以及它们的推广。这四条性质多用于分式的计算和证明,以及三角函数、相似三角形、平行线分线段成比例定理的应用中。其中尤其以等比性质的应用最为广泛。在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
合比性质:在一个比例等式中,第一个比例的前后项之和与第一个比例的后项的比,等于第二个比例的前后项之和与第二个比例的后项的比。
比例尺是表示图上距离比实地距离缩小的程度,因此也叫缩尺。用公式表示为:比例尺=图上距离/实地距离。
(1)数字式,用数字的比例式或分数式表示比例尺的大小。例如地图上1厘米代表实地距离500千米,可写成:1∶50,000,000或写成:1/50,000,000。
(2)线段式,在地图上画一条线段,并注明地图上1厘米所代表的实际距离。
(3)文字式,在地图上用文字直接写出地图上1厘米代表实地距离多少千米,如:图上1厘米相当于地面距离500千米,或五千万分之一。
比例线段:1.两条线段的长度比叫做这两条线段的比。
2.在同一单位下,四条线段长度为a、b、c、d,其关系为a∶b=c∶d,那么,这四条线段叫做成比例线段,简称比例线段。
3.一般的,如果三个数a,b,c满足比例式a∶b=b∶c,则b就叫做a,c的比例中项。
比例性质释义:
1.合比性质:
在一个比例等式中,第一个比例的前后项之和与第一个比例的后项的比,等于第二个比例的前后项之和与第二个比例的后项的比。
2.分比性质:
在一个比例等式中,第一个比例的前后项之差与第一个比例的后项的比,等于第二个比例的前后项之差与第二个比例的后项的比。
3.合分比性质:
在一个比例等式中,第一个比例的前后项之和与第一个比例的前后项之差的比,等于第二个比例的前后项之和与第二个比例的前后项之差的比。
4.等比性质:
在一个比例等式中,两前项之和与两后项之和的比例与原比例相等。
初中数学知识点:黄金分割数
平行线分线段成比例定理:
三条平行线截两条直线,所得对应线段成比例。
推广:过一点的一线束被平行线截得的对应线段成比例。
定理推论:
①平行于三角形一边的直线截其它两边(或两边的延长线)所得对应线段成比例。
②平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。
黄金分割:
黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。
黄金分割线:
黄金分割线是一种古老的数学方法。黄金分割的创始人是古希腊的毕达哥拉斯,他在当时十分有限的科学条件下大胆断言:
一条线段的某一部分与另一部分之比,如果正好等于另一部分同整个线段的比即0.618,那么,这样比例会给人一种美感。
后来,这一神奇的比例关系被古希腊著名哲学家、美学家柏拉图誉为“黄金分割律”。黄金分割线的神奇和魔力,在数学界上还没有明确定论,但它屡屡在实际中发挥着意想不到的作用。
黄金分割线的最基本公式,是将1分割为0.618和0.382,它们有如下一些特点:
(1)数列中任一数字都是由前两个数字之和构成。
(2)前一数字与后一数字之比例,趋近于一固定常数,即0.618。
(3)后一数字与前一数字之比例,趋近于1.618。
(4)1.618与0.618互为倒数,其乘积则约等于1。
(5)任一数字如与前面第二个数字相比,其值趋近于2.618;如与后面第二个数字相比,其值则趋近于0.382。
理顺下来,上列奇异数字组合除能反映黄金分割的两个基本比值0.618和0.382以外,尚存在下列两组神秘比值。
即: (1)0.191、0.382、0.5、0.618、0.809 (2)1、1.382、1.5、1.618、2、2.382、2.618
黄金分割点:
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,用分数表示为(√5-1)/2,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这个分割点就叫做黄金分割点(goldensectionratio通常用φ表示)这是一个十分有趣的数字,我们以0.618来近似表示,通过简单的计算就可以发现:(1-0.618)/0.618=0.6一条线段上有两个黄金分割点。
相关文章
叙事作文中考范文五篇2023-06-08 20:58:05
中考物理热点考点是什么2023-06-14 03:28:17
黄冈中考物理电学考点是什么2023-06-16 03:58:49
初中物理考点之运动和力有哪些2023-06-13 02:57:10
初中数学课堂教学三篇2023-06-03 15:52:55
中考考场心态调整有哪些2023-06-06 15:42:16
上海对外经贸大学和北京交通大学(威海校区)对比哪个好(排名分数线区2024-03-31 16:25:18
河北高考排名237950名物理能上什么大学(能报哪些学校)2024-03-31 16:19:23
山东城市建设职业学院在山东招生人数和招生计划 多少人2024-03-31 16:15:16
上海农林职业技术学院在湖南招生人数和招生计划 多少人2024-03-31 16:12:52
吉林农业科技学院在湖南招生人数和招生计划 多少人2024-03-31 16:09:19
安徽高考多少分可以上云南经贸外事职业学院 招生人数和最低分2024-03-31 16:04:52
达州中考录取率多少,各高中录戎数线统计2023-06-06 21:56:40
广安中考录取率多少,各高中录戎数线统计2023-06-08 08:54:58
宜宾中考录取率多少,各高中录戎数线统计2023-06-19 04:31:29