沪教版七年级数学教案最新例文1
教材内容
1.本单元教学的主要内容:
二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.
2.本单元在教材中的地位和作用:
二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.
教学目标
1.知识与技能
(1)理解二次根式的概念.
(2)理解 (a≥0)是一个非负数,( )2=a(a≥0), =a(a≥0).
(3)掌握 ? = (a≥0,b≥0), = ? ;
= (a≥0,b>0), = (a≥0,b>0).
(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.
2.过程与方法
(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.
(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.
(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.
(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.
3.情感、态度与价值观
通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.
教学重点
1.二次根式 (a≥0)的内涵. (a≥0)是一个非负数;( )2=a(a≥0); =a(a≥0)及其运用.
2.二次根式乘除法的规定及其运用.
3.最简二次根式的概念.
4.二次根式的加减运算.
教学难点
1.对 (a≥0)是一个非负数的理解;对等式( )2=a(a≥0)及 =a(a≥0)的理解及应用.
2.二次根式的乘法、除法的条件限制.
3.利用最简二次根式的概念把一个二次根式化成最简二次根式.
教学关键
1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.
2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.
单元课时划分
本单元教学时间约需11课时,具体分配如下:
21.1 二次根式 3课时
21.2 二次根式的乘法 3课时
21.3 二次根式的加减 3课时
教学活动、习题课、小结 2课时
沪教版七年级数学教案最新例文2
教学内容
二次根式的概念及其运用
教学目标
理解二次根式的概念,并利用 (a≥0)的意义解答具体题目.
提出问题,根据问题给出概念,应用概念解决实际问题.
教学重难点关键
1.重点:形如 (a≥0)的式子叫做二次根式的概念;
2.难点与关键:利用“ (a≥0)”解决具体问题.
教学过程
一、复习引入
(学生活动)请同学们独立完成下列三个问题:
问题1:已知反比例函数y= ,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.
问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.
问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.
老师点评:
问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标( , ).
问题2:由勾股定理得AB=
问题3:由方差的概念得S= .
二、探索新知
很明显 、 、 ,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.
(学生活动)议一议:
1.-1有算术平方根吗?
2.0的算术平方根是多少?
3.当a<0, 有意义吗?
老师点评:(略)
例1.下列式子,哪些是二次根式,哪些不是二次根式: 、 、 、 (x>0)、 、 、- 、 、 (x≥0,y≥0).
分析:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0.
解:二次根式有: 、 (x>0)、 、- 、 (x≥0,y≥0);不是二次根式的有: 、 、 、 .
例2.当x是多少时, 在实数范围内有意义?
分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0, 才能有意义.
解:由3x-1≥0,得:x≥
当x≥ 时, 在实数范围内有意义.
三、巩固练习
教材P练习1、2、3.
四、应用拓展
例3.当x是多少时, + 在实数范围内有意义?
分析:要使 + 在实数范围内有意义,必须同时满足 中的≥0和 中的x+1≠0.
解:依题意,得
由①得:x≥-
由②得:x≠-1
当x≥- 且x≠-1时, + 在实数范围内有意义.
例4(1)已知y= + +5,求 的值.(答案:2)
(2)若 + =0,求a2004+b2004的值.(答案: )
五、归纳小结(学生活动,老师点评)
本节课要掌握:
1.形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.
六、布置作业
1.教材P8复习巩固1、综合应用5.
2.选用课时作业设计.
3.课后作业:《同步训练》
第一课时作业设计
一、选择题 1.下列式子中,是二次根式的是( )
A.- B. C. D.x
2.下列式子中,不是二次根式的是( )
A. B. C. D.
3.已知一个正方形的面积是5,那么它的边长是( )
A.5 B. C. D.以上皆不对
二、填空题
1.形如________的式子叫做二次根式.
2.面积为a的正方形的边长为________.
3.负数________平方根.
三、综合提高题
1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?
2.当x是多少时, +x2在实数范围内有意义?
3.若 + 有意义,则 =_______.
4.使式子 有意义的未知数x有( )个.
A.0 B.1 C.2 D.无数
5.已知a、b为实数,且 +2 =b+4,求a、b的值.
第一课时作业设计答案:
一、1.A 2.D 3.B
二、1. (a≥0) 2. 3.没有
三、1.设底面边长为x,则0.2x2=1,解答:x= .
2.依题意得: ,
∴当x>- 且x≠0时, +x2在实数范围内没有意义.
3.
4.B
5.a=5,b=-4
沪教版七年级数学教案最新例文3
教学内容
1. (a≥0)是一个非负数;
2.( )2=a(a≥0).
教学目标
理解 (a≥0)是一个非负数和( )2=a(a≥0),并利用它们进行计算和化简.
通过复习二次根式的概念,用逻辑推理的方法推出 (a≥0)是一个非负数,用具体数据结合算术平方根的意义导出( )2=a(a≥0);最后运用结论严谨解题.
教学重难点关键
1.重点: (a≥0)是一个非负数;( )2=a(a≥0)及其运用.
2.难点、关键:用分类思想的方法导出 (a≥0)是一个非负数;用探究的方法导出( )2=a(a≥0).
教学过程
一、复习引入
(学生活动)口答
1.什么叫二次根式?
2.当a≥0时, 叫什么?当a<0时, 有意义吗?
老师点评(略).
二、探究新知
议一议:(学生分组讨论,提问解答)
(a≥0)是一个什么数呢?
老师点评:根据学生讨论和上面的练习,我们可以得出
(a≥0)是一个非负数.
做一做:根据算术平方根的意义填空:
( )2=_______;( )2=_______;( )2=______;( )2=_______;
( )2=______;( )2=_______;( )2=_______.
老师点评: 是4的算术平方根,根据算术平方根的意义, 是一个平方等于4的非负数,因此有( )2=4.
同理可得:( )2=2,( )2=9,( )2=3,( )2= ,( )2= ,( )2=0,所以
( )2=a(a≥0)
例1 计算
1.( )2 2.(3 )2 3.( )2 4.( )2
分析:我们可以直接利用( )2=a(a≥0)的结论解题.
解:( )2 = ,(3 )2 =32?( )2=32?5=45,
( )2= ,( )2= .
三、巩固练习
计算下列各式的值:
( )2 ( )2 ( )2 ( )2 (4 )2
四、应用拓展
例2 计算
1.( )2(x≥0) 2.( )2 3.( )2
4.( )2
分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;
(4)4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2≥0.
所以上面的4题都可以运用( )2=a(a≥0)的重要结论解题.
解:(1)因为x≥0,所以x+1>0
( )2=x+1
(2)∵a2≥0,∴( )2=a2
(3)∵a2+2a+1=(a+1)2
又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1
(4)∵4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2
又∵(2x-3)2≥0
∴4x2-12x+9≥0,∴( )2=4x2-12x+9
例3在实数范围内分解下列因式:
(1)x2-3 (2)x4-4 (3) 2x2-3
分析:(略)
五、归纳小结
本节课应掌握:
1. (a≥0)是一个非负数;
2.( )2=a(a≥0);反之:a=( )2(a≥0).
六、布置作业
1.教材P8 复习巩固2.(1)、(2) P9 7.
2.选用课时作业设计.
3.课后作业:《同步训练》
沪教版七年级数学教案最新例文4
一元二次方程
1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.
2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.
重点
通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.
难点
一元二次方程及其二次项系数、一次项系数和常数项的识别.
活动1 复习旧知
1.什么是方程?你能举一个方程的例子吗?
2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式.
(1)2x-1 (2)mx+n=0 (3)1x+1=0 (4)x2=1
3.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念.
A.0 B.1 C.2 D.3
活动2 探究新知
根据题意列方程.
1.教材第2页 问题1.
提出问题:
(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?
(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?
(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.
2.教材第2页 问题2.
提出问题:
(1)本题中有哪些量?由这些量可以得到什么?
(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?
(3)如果有x个队参赛,一共比赛多少场呢?
3.一个数比另一个数大3,且两个数之积为0,求这两个数.
提出问题:
本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?
4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?
活动3 归纳概念
提出问题:
(1)上述方程与一元一次方程有什么相同点和不同点?
(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?
(3)归纳一元二次方程的概念.
1.一元二次方程:只含有________个未知数,并且未知数的次数是________,这样的________方程,叫做一元二次方程.
2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
提出问题:
(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?
(2)为什么要限制a≠0,b,c可以为0吗?
(3)2x2-x+1=0的一次项系数是1吗?为什么?
3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).
活动4 例题与练习
例1 在下列方程中,属于一元二次方程的是________.
(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;
(4)2x2-2x(x+7)=0.
总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.
例2 教材第3页 例题.
例3 以-2为根的一元二次方程是( )
A.x2+2x-1=0 B.x2-x-2=0
C.x2+x+2=0 D.x2+x-2=0
总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.
练习:
1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.
2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.
(1)4x2=81;(2)(3x-2)(x+1)=8x-3.
3.教材第4页 练习第2题.
4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.
答案:1.a≠1;2.略;3.略;4.k=4.
活动5 课堂小结与作业布置
课堂小结
我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?
作业布置
教材第4页 习题21.1第1~7题.21.2 解一元二次方程
21.2.1 配方法(3课时)
第1课时 直接开平方法
理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.
提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.
重点
运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.
难点
通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.
一、复习引入
学生活动:请同学们完成下列各题.
问题1:填空
(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.
解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.
问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?
二、探索新知
上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?
(学生分组讨论)
老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的两根为t1=1,t2=-2
例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2
分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.
(2)由已知,得:(x+3)2=2
直接开平方,得:x+3=±2
即x+3=2,x+3=-2
所以,方程的两根x1=-3+2,x2=-3-2
解:略.
例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.
分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2
解:设每年人均住房面积增长率为x,
则:10(1+x)2=14.4
(1+x)2=1.44
直接开平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的两根是x1=0.2=20%,x2=-2.2
因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.
所以,每年人均住房面积增长率应为20%.
(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?
共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.
三、巩固练习
教材第6页 练习.
四、课堂小结
本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.
五、作业布置
教材第16页 复习巩固1.第2课时 配方法的基本形式
理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.
通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.
沪教版七年级数学教案最新例文5
配方法的基本形式
理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.
通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.
重点
讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.
难点
将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.
一、复习引入
(学生活动)请同学们解下列方程:
(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7
老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±p或mx+n=±p(p≥0).
如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?
二、探索新知
列出下面问题的方程并回答:
(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?
(2)能否直接用上面前三个方程的解法呢?
问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?
(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.
(2)不能.
既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:
x2+6x-16=0移项→x2+6x=16
两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9
左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5
解一次方程→x1=2,x2=-8
可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.
像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.
可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.
例1 用配方法解下列关于x的方程:
(1)x2-8x+1=0 (2)x2-2x-12=0
分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.
解:略.
三、巩固练习
教材第9页 练习1,2.(1)(2).
四、课堂小结
本节课应掌握:
左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.
五、作业布置
相关文章
专升本数学复习指导总结2023-06-04 17:01:13
小学数学二年级的同步练习归纳2023-06-18 23:20:06
同步练习册二年级数学2023-06-04 19:36:15
二年级数学的同步练习归纳2023-06-04 23:41:16
小学二年级数学同步练习试卷及答案2023-06-06 23:33:06
初中七年级上册数学同步练习试题归纳2023-06-18 07:16:18
上海对外经贸大学和北京交通大学(威海校区)对比哪个好(排名分数线区2024-03-31 16:25:18
河北高考排名237950名物理能上什么大学(能报哪些学校)2024-03-31 16:19:23
山东城市建设职业学院在山东招生人数和招生计划 多少人2024-03-31 16:15:16
上海农林职业技术学院在湖南招生人数和招生计划 多少人2024-03-31 16:12:52
吉林农业科技学院在湖南招生人数和招生计划 多少人2024-03-31 16:09:19
安徽高考多少分可以上云南经贸外事职业学院 招生人数和最低分2024-03-31 16:04:52
小学数学上册二年级教案最新例文2023-06-09 21:16:26
新版北师大版二年级下册数学教案最新模板2023-06-04 01:07:32
最新一年级数学跷跷板教案模板2023-06-06 16:30:46