北考网

小学六年级上册数学必考知识点总结

时间:2023-06-15 08:44:44 文/张东东 总结北考网www.beiweimall.com

  小学六年级上册数学必考知识点总结1

  分数乘法知识点

  (一)分数乘法意义:

  1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

  “分数乘整数”指的是第二个因数必须是整数,不能是分数。

  2、一个数乘分数的意义就是求一个数的几分之几是多少。

  “一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

  (二)分数乘法计算法则:

  1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

  (1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。

  2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)

  (1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

  (2)分数化简的方法是:分子、分母同时除以它们的公因数。

  (3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

  (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

  (三)积与因数的关系:

  一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a。

  一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c<a(b≠0)。< p="">

  一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b =1时,c=a 。

  在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

  (四)分数乘法混合运算

  1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

  2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

  乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:a×(b±c)=a×b±a×c

  (五)倒数的意义:乘积为1的两个数互为倒数。

  1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)

  2、判断两个数是否互为倒数的标准是:两数相乘的积是否为“1”。例如:a×b=1则a、b互为倒数。

  3、求倒数的方法:

  ①求分数的倒数:交换分子、分母的位置。

  ②求整数的倒数:整数分之1。

  ③求带分数的倒数:先化成假分数,再求倒数。

  ④求小数的倒数:先化成分数再求倒数。

  4、1的倒数是它本身,因为1×1=1

  0没有倒数,因为任何数乘0积都是0,且0不能作分母。

  5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。

  假分数的倒数小于或等于1。带分数的倒数小于1。

  (六)分数乘法应用题——用分数乘法解决问题

  1、求一个数的几分之几是多少?(用乘法)

  已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。

  2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

  3、什么是速度?

  速度是单位时间内行驶的路程。

  速度=路程÷时间时间=路程÷速度路程=速度×时间

  单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。

  4、求甲比乙多(少)几分之几?

  多:(甲-乙)÷乙少:(乙-甲)÷乙

  数与代数知识点

  一、分数乘法

  (一)分数乘法的计算法则:

  1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)

  2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

  3、为了计算简便,能约分的要先约分,再计算。

  注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

  (二)规律:(乘法中比较大小时)

  一个数(0除外)乘大于1的数,积大于这个数。

  一个数(0除外)乘小于1的数(0除外),积小于这个数。

  一个数(0除外)乘1,积等于这个数。

  (三)分数混合运算的运算顺序和整数的运算顺序相同。

  (四)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

  乘法交换律:a×b=b×a

  乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:(a+b)×c=ac+bc ac+bc=(a+b)×c

  二、分数乘法的解决问题(详细见重难点分解)

  (已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)

  1、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面

  2、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数× 。

  3、写数量关系式技巧:

  (1)“的”相当于“×”(乘号)

  “占”、“是”、“比”“相当于”相当于“=”(等号)

  (2)分率前是“的”:

  单位“1”的量×分率=分率对应量

  (3)分率前是“多或少”的意思:

  单位“1”的量×(1±分率)=分率的对应量

  二、分数除法

  (一)倒数

  1、倒数的意义:乘积是1的两个数互为倒数。

  强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。

  2、求倒数的方法:(原数与倒数之间不要写等号哦)

  (1)求分数的倒数:交换分子分母的位置。

  (2)求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

  (3)求带分数的倒数:把带分数化为假分数,再求倒数。

  (4)求小数的倒数:把小数化为分数,再求倒数。

  3、因为1×1=1,1的倒数是1;

  因为找不到与0相乘得1的数0没有倒数。

  4、对于任意数a(a≠0),它的倒数为1/a;非零整数a的倒数为1/a;分数b/a的倒数是a/b;

  5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

  (二)分数除法

  1、分数除法的意义:

  分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

  2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。

  3、规律(分数除法比较大小时):

  (1)当除数大于1,商小于被除数;

  (2)当除数小于1(不等于0),商大于被除数;

  (3)、当除数等于1,商等于被除数。

  4、“[ ] ”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。

  (三)分数除法解决问题(详细见重难点分解)

  (未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。 )

  1、数量关系式和分数乘法解决问题中的关系式相同:

  (1)分率前是“的”:

  单位“1”的量×分率=分率对应量

  (2)分率前是“多或少”的意思:

  单位“1”的量×(1分率)=分率对应量

  2、解法:(建议:用方程解答)

  (1)方程:根据数量关系式设未知量为x,用方程解答。

  (2)算术(用除法):分率对应量÷对应分率=单位“1”的量

  3、求一个数是另一个数的几分之几:就用一个数÷另一个数

  4、求一个数比另一个数多(少)几分之几:

  ①求多几分之几:大数÷小数– 1

  ②求少几分之几:1 -小数÷大数

  或①求多几分之几(大数-小数)÷小数

  ②求少几分之几:(大数-小数)÷大数

  (四)比和比的应用

  1、比的意义:两个数相除又叫做两个数的比。

  2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值(比值通常用分数表示,也可以用小数或整数表示)。

  例如

  15:10 = 15÷10=1.5

  ∶ ∶ ∶ ∶

  前项比号后项比值

  3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。

  例:路程÷速度=时间。

  4、区分比和比值

  比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

  比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

  5、根据分数与除法的关系,两个数的比也可以写成分数形式。

  6、比和除法、分数的联系:

  7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

  8、根据比与除法、分数的关系,可以理解比的后项不能为0。

  体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

  (五)比的基本性质

  1、根据比、除法、分数的关系:

  商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

  分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

  比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

  3、根据比的基本性质,可以把比化成最简单的整数比。

  4.化简比:

  (1)用比的基本性质化简

  ①用比的前项和后项同时除以它们的`公因数。

  ②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

  ③两个小数的比:向右移动小数点的位置,先化成整数比再化简。

  (2)用求比值的方法。注意:最后结果要写成比的形式。

  5.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

  如:已知两个量之比为,则设这两个量分别为。

  6、路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)

  工作总量一定,工作效率和工作时间成反比。

  (如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)

  三、百分数

  (一)百分数的意义和写法

  1、百分数的意义:表示一个数是另一个数的百分之几。

  百分数是指的两个数的比,因此也叫百分率或百分比。

  2、百分数和分数的主要联系与区别:

  (1)联系:都可以表示两个量的倍比关系。

  (2)区别:

  ①意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;

  分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。

  ②、百分数的分子可以是整数,也可以是小数;

  分数的分子不能是小数,只能是除0以外的自然数。

  3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示。

  (二)百分数与小数的互化:

  1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。

  2.百分数化成小数:把小数点向左移动两位,同时去掉百分号。

  (三)百分数的和分数的互化

  1、百分数化成分数:

  先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。

  2、分数化成百分数:

  ①用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。

  ②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

  (四)常见的分数与小数、百分数之间的互化

  圆的面积知识

  1、圆的面积:圆所占平面的大小叫做圆的面积。用字母S表示。

  2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。

  3、圆面积公式的推导:

  (1)、用逐渐逼近的转化思想:体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。

  (2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。

  (3)、拼出的图形与圆的周长和半径的关系。

  4、环形的面积:

  一个环形,外圆的半径是R,内圆的半径是r。(R=r+环的宽度.)

  S环= πR2-πr2或

  环形的面积公式:S环=π(R2-r2)。

  5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。

  而面积扩大或缩小的倍数是这倍数的平方倍。

  例如:

  在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。

  6、两个圆:半径比=直径比=周长比;而面积比等于这比的平方。

  例如:

  两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9

  7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π

  8、当长方形,正方形,圆的周长相等时,圆面积,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。

  9、确定起跑线:

  (1)、每条跑道的长度=两个半圆形跑道合成的圆的周长+两个直道的长度。

  (2)、每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。(因此起跑线不同)

  (3)、每相邻两个跑道相隔的距离是:2×π×跑道的宽度

  (4)、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。

  10、常用各π值结果:

  2π = 6.28 3π = 9.42

  4π = 12.56 5π = 15.7

  6π = 18.84 7π = 21.98

  8π = 25.12 9π = 28.26

  10π = 31.4 16π = 50.24

  25π = 78.5 36π = 113.04

  64π = 200.96 96π = 301.44

  小学六年级上册数学必考知识点总结2

  1. 位置的表示方法: A(列,行)如:A(3,4)表示A点在第三列第四行。

  一般先看横的数字,再看竖的数字,注意中间是逗号

  2.分数乘法的意义:一个数×分数

  分数×一个数

  3.乘积是1的两个数互为倒数 1的倒数是1 0没有倒数

  4.除以一个不等于0的数,等于乘这个数的倒数

  5.两个数相除又叫做两个数的比。比值通常用分数表示,也可以用分数或整数

  6.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变

  7.圆的周长与它的直径的比值叫做圆周率,用兀来表示,兀≈3.14

  8.有关圆的公式:

  C= 兀d = 2兀r S =兀r 2

  d=C÷兀 d=2 r r = d÷2 r = C÷兀÷2

  圆环的面积S = 兀 R 2-兀 r 2

  9.原价×折扣=现价 营业额×税率=应纳税额 本金×利率×时间=利息

  10.条形统计图:可以清楚的看出数据的多少

  折线统计图:可以清楚的看出数据的增减变化趋势

  扇形统计图:可以清楚的看出各部分同总数之间的关系

  六年级数学下册知识点

  一、比例

  1、比例的基本性质是在比例里两内项积等于两外项积。

  2、用x 和 y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:

  Y : x = k(一定)

  3、用x 和 y表示两种相关联的量,用k表示它们的乘积(一定),那么反比例关系表示为:

  Xy=k(一定)

  二、数与代数(复习)

  1、自然数和0都是整数。

  2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。

  3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

  每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

  4、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

  5、数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

  6:倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。

  7、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。

  8、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。

  9、能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

  10、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

  11、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

  12、1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。

  13、每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

  14、几个数公有的因数,叫做这几个数的公因数。其中的一个,叫做这几个数的公因数,例如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因数,6是它们的公因数。

  15、公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

  16、如果较小数是较大数的因数,那么较小数就是这两个数的公因数。

  17、如果两个数是互质数,它们的公因数就是1。

  18、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……

  3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。

  19、如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

  20、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。

  (二)小数

  1、小数的意义 :把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。

  一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

  2、一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数是整数部分,小数点右边的数叫做小数部分。

  3、在小数里,每相邻两个计数单位之间的进率都是10。小数部分的分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

  (三)分数

  1、分数的意义 :把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

  2、把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

  3、分数的分类

  真分数:分子比分母小的分数叫做真分数。真分数小于1。 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

  4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

  5、分子分母是互质数的分数叫做最简分数。

  6、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

  (四) 约分和通分

  1、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

  2、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

  三 性质和规律

  1、商不变的规律 :商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。

  2、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

  3、小数点位置的移动引起小数大小的变化

  (1)小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……

  (2)小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……

  (3)小数点向左移或者向右移位数不够时,要用“0"补足位。

  (五)分数的基本性质

  分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。

  (六)分数与除法的关系

  1. 被除数÷除数= 被除数/除数

  2. 因为零不能作除数,所以分数的分母不能为零。

  3. 被除数 相当于分子,除数相当于分母。

  四 运算的意义

  (一)整数四则运算

  加数+加数=和

  一个加数=和-另一个加数

  被减数-减数=差

  被减数=减数+差

  减数=被减数-差

  一个因数× 一个因数 =积

  一个因数=积÷另一个因数

  被除数÷除数=商

  除数=被除数÷商

  被除数=商×除数

  (二)运算定律

  1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。

  2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

  3. 乘法交换律:

  两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。

  4. 乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。

  5. 乘法分配律:

  两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。

  6. 减法的性质:

  从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。

  (三)运算法则

  1. 整数加法计算法则:

  相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。

  2. 整数减法计算法则:

  相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。

  3. 整数乘法计算法则:

  先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。

  4. 整数除法计算法则:

  先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。

  5. 小数乘法法则:

  先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。

  6. 除数是整数的小数除法计算法则:

  先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。

  7. 除数是小数的除法计算法则:

  先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。

  8. 同分母分数加减法计算方法:

  同分母分数相加减,只把分子相加减,分母不变。

  9. 异分母分数加减法计算方法:

  先通分,然后按照同分母分数加减法的的法则进行计算。

  10. 带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。

  整

  (一)小数乘除法的意义及法则

  1. 小数乘法意义:

  小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。例:3.5×4表示4个3.5相加是多少。或表示3.5的4倍是多少。

  一个数乘小数的意义与整数乘法的意义不同,是求这个数的十分之几,百分之几,千分之几……。例:25×0.17,表示25的百分之十七是多少。

  2. 小数除法的意义

  小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算。例: 表示已知两个因数的积是0.75和其中一个因数0.5,求另一个因数是多少。或表示0.75是0.5的多少倍。

  (二)小数乘除法的计算法则

  1. 小数乘法法则:

  (1)先按照整数乘法的法则计算;

  (2)看因数中一共有几位小数,就从积的右边数出几位,点上小数点。

  2. 小数除法法则:

  (1)先按照整数除法的法则去除;

  (2)商的小数点和被除数的小数点对齐;

  (3)除到被除数的末尾仍有余数,就在余数后面添0再继续除。

  二、 度量衡

  长度单位换算

  1千米=1000米 1米=10分米

  1分米=10厘米 1米=100厘米

  1厘米=10毫米

  面积单位换算

  1平方千米=100公顷

  1公顷=10000平方米

  1平方米=100平方分米

  1平方分米=100平方厘米

  1平方厘米=100平方毫米

  体(容)积单位换算

  1立方米=1000立方分米

  1立方分米=1000立方厘米

  1立方分米=1升

  1立方厘米=1毫升

  1立方米=1000升

  重量单位换算

  1吨=1000 千克

  1千克=1000克

  1千克=1公斤

  人民币单位换算

  1元=10角

  1角=10分

  1元=100分

  时间单位换算

  1世纪=100年 1年=12月

  大月(31天)有:135781012月

  小月(30天)的有:46911月

  平年2月28天, 闰年2月29天

  平年全年365天, 闰年全年366天

  1日=24小时 1时=60分

  1分=60秒 1时=3600秒

  代数初步知识

  一、用字母表示数

  1 用字母表示数的意义和作用

  2用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式

  (1)常见的数量关系

  路程用s表示,速度v用表示,时间用t表示,三者之间的关系:

  s=vt v=s/t t=s/v

  总价用a表示,单价用b表示,数量用c表示,三者之间的关系:

  a=bc b=a/c c=a/b

  (2)运算定律和性质

  加法交换律:a+b=b+a

  加法结合律:(a+b)+c=a+(b+c)

  乘法交换律:ab=ba

  乘法结合律:(ab)c=a(bc)

  乘法分配律:(a+b)c=ac+bc

  减法的性质:a-(b+c) =a-b-c

  (3)用字母表示几何形体的公式

  长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。 c=2(a+b) s=ab

  正方形的边长a用表示,周长用c表示,面积用s表示。 c=4a s=a2

  平行四边形的底a用表示,高用h表示,面积用s表示。 s=ah

  三角形的底用a表示,高用h表示,面积用s表示。

  s=ah/2

  梯形的上底用a表示,下底b用表示,高用h表示, s=(a+b)h/2

  小学数学图形计算公式

  1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a

  2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a

  3 、长方形

  C周长 S面积 a边长

  周长=(长+宽)×2

  C=2(a+b)

  面积=长×宽

  S=ab

  4 、长方体

  V:体积 s:面积 a:长 b: 宽 h:高

  (1)表面积(长×宽+长×高+宽×高)×2

  S=2(ab+ah+bh)

  (2)体积=长×宽×高

  V=abh

  5 三角形

  s面积 a底 h高

  面积=底×高÷2

  s=ah÷2

  三角形高=面积 ×2÷底

  三角形底=面积 ×2÷高

  6 平行四边形

  s面积 a底 h高

  面积=底×高

  s=ah

  7 梯形

  s面积 a上底 b下底 h高

  面积=(上底+下底)×高÷2

  s=(a+b)× h÷2

  8 圆形

  S面积 C周长 ∏ d=直径 r=半径

  (1)周长=直径×∏=2×∏×半径

  C=∏d=2∏r

  (2)面积=半径×半径×∏

  9 圆柱体

  v:体积 h:高 s;底面积 r:底面半径 c:底面周长

  (1)侧面积=底面周长×高

  (2)表面积=侧面积+底面积×2

  (3)体积=底面积×高

  (4)体积=侧面积÷2×半径

  10 圆锥体

  v:体积 h:高 s;底面积 r:底面半径

  体积=底面积×高÷3

  11、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

  12、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

  13、圆的面积=圆周率×半径×半径

  (二)分数和百分数的应用

  1、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

  2、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。

  特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

  解题关键:准确判断单位“1”的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。

  3、分数除法应用题:

  (1)求一个数是另一个数的几分之几(或百分之几)是多少。

  特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,也就是求他们的倍数关系。

  解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。

  甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。

  甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式:(甲数减乙数)/乙数或(甲数减乙数)/甲数 。

  (2)已知一个数的几分之几(或百分之几 )是多少 ,求这个数。

  特征:已知一个实际数量和它相对应的分率,求单位“1”的量。

  解题关键:根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际数量。

  4、百分率:

  发芽率=发芽种子数/试验种子数×100%

  小麦的出粉率= 面粉的重量/小麦的重量×100%

  产品的合格率=合格的产品数/产品总数×100%

  职工的出勤率=实际出勤人数/应出勤人数×100%

  5、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

  解题关键:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。

  数量关系:工作总量=工作效率×工作时间

  工作效率=工作总量÷工作时间

  工作时间=工作总量÷工作效率

  工作总量÷工作效率和=合作时间

  数学六年级学习方法

  首先:课前复习。就是上课前花两三分钟把书本本节课要学的内容看一遍。仅仅是看一遍,过一遍。这样上课老师讲自己不但可以跟上老师节奏还可以再次巩固。其余不要干其他多余的事。

  其次:上课时候一定要专心听讲,如果觉得老师这里讲得都懂了的话可以自己翻书看后面的内容。做习题的时候一定要一道一道往过做,不要越题做。因为对于课本来说这些都是基础,只有基础完全掌握后才能做难题。上课过程中第一次接触到的知识点概念等,一定一定要当堂背过。不然以后很难背过,不要妄想考前抱佛教再背

  另外要把笔记记准确,知道自己需要记什么不需要记什么,憋一个劲地往书上搬。字不要求整齐,自己能看懂就行。课本资料书上有例题,多看多记方法。先看课本基础,在看资料书上着重的。例题的方法一定一定要理解,不要去背!接着下课再看笔记,只是略微巩固记住。

  数学六年级学习技巧

  养成良好的课前和课后学习习惯:在当前高中数学学习中,培养正确的学习习惯是一项重要的学习技能。虽然有一种刻板印象的猜疑,但在高中数学学习真的是反复尝试和错误的。学生们不得不预习课本。我准备的数学教科书不是简单的阅读,而是一个例子,至少十分钟的思考。在使用前不能通过学习知识解决问题的情况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,掌握解决问题的思路。同时,在课堂上安排笔记也是必要的。在高中数学研究中,建议采用两种形式的笔记,一种是课堂速记,另一种是课后笔记。这不仅提高了课堂记忆的吸收能力,而且有助于对笔记内容的查询。

相关文章

公司植树节活动总结(通用7篇)2023-06-08 07:50:44

志愿者服务的总结(精选11篇)2023-06-14 02:45:12

初三班主任个人学期工作总结模板2023-06-14 02:33:58

班主任班务工作总结10篇2023-06-18 03:57:06

初中英语基本知识点总结2023-06-18 22:19:23

网络优化中心工作总结及计划2023-06-12 20:28:50

上海对外经贸大学和北京交通大学(威海校区)对比哪个好(排名分数线区2024-03-31 16:25:18

河北高考排名237950名物理能上什么大学(能报哪些学校)2024-03-31 16:19:23

山东城市建设职业学院在山东招生人数和招生计划 多少人2024-03-31 16:15:16

上海农林职业技术学院在湖南招生人数和招生计划 多少人2024-03-31 16:12:52

吉林农业科技学院在湖南招生人数和招生计划 多少人2024-03-31 16:09:19

安徽高考多少分可以上云南经贸外事职业学院 招生人数和最低分2024-03-31 16:04:52

幼儿园保育工作总结六篇2023-06-02 07:56:30

最新学校安全教育日活动总结范文2023-06-05 21:13:48

幼儿园小班九月份工作心得2023-06-08 09:19:43