高三常用的数学公式总结1
立体几何公式
名称符号面积S体积V
正方体a——边长S=6a^2V=a^3
长方体a——长S=2(ab+ac+bc)V=abc
b——宽
c——高
棱柱S——底面积V=Sh
h——高
棱锥S——底面积V=Sh/3
h——高
棱台S1和S2——上、下底面积V=h〔S1+S2+√(S1^2)/2〕/3
h——高
拟柱体S1——上底面积V=h(S1+S2+4S0)/6
S2——下底面积
S0——中截面积
h——高
圆柱r——底半径C=2πrV=S底h=∏rh
h——高
C——底面周长
S底——底面积S底=πR^2
S侧——侧面积S侧=Ch
S表——表面积S表=Ch+2S底
S底=πr^2
空心圆柱R——外圆半径
r——内圆半径
h——高V=πh(R^2—r^2)
直圆锥r——底半径
h——高V=πr^2h/3
圆台r——上底半径
R——下底半径
h——高V=πh(R^2+Rr+r^2)/3
球r——半径
d——直径V=4/3πr^3=πd^2/6
球缺h——球缺高
r——球半径
a——球缺底半径a^2=h(2r—h)V=πh(3a^2+h^2)/6=πh2(3r—h)/3
球台r1和r2——球台上、下底半径
h——高V=πh[3(r12+r22)+h2]/6
圆环体R——环体半径
D——环体直径
r——环体截面半径
d——环体截面直径V=2π^2Rr^2=π^2Dd^2/4
桶状体D——桶腹直径
d——桶底直径
h——桶高V=πh(2D^2+d2^)/12(母线是圆弧形,圆心是桶的中心)
V=πh(2D^2+Dd+3d^2/4)/15(母线是抛物线形)
高三常用的数学公式总结2
无穷递减等比数列
a,aq,aq^2……aq^n
其中,n趋近于正无穷,q<1
注意:
(1)我们把|q|<1无穷等比数列称为无穷递缩等比数列,它的前n项和的极限才存在,当|q|≥1无穷等比数列它的前n项和的极限是不存在的。
(2)S是表示无穷等比数列的所有项的和,这种无限个项的和与有限个项的和从意义上来说是不一样的,S是前n项和Sn当n→∞的极限,即S=
S=a/(1—q)
高三常用的数学公式总结3
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补
15、定理三角形两边的和大于第三边
16、推论三角形两边的差小于第三边
17、三角形内角和定理三角形三个内角的和等于180°
18、推论1直角三角形的两个锐角互余
19、推论2三角形的一个外角等于和它不相邻的两个内角的和
20、推论3三角形的一个外角大于任何一个和它不相邻的内角
21、全等三角形的对应边、对应角相等
22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
25、边边边公理(SSS)有三边对应相等的两个三角形全等
26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
27、定理1在角的平分线上的点到这个角的两边的距离相等
28、定理2到一个角的两边的距离相同的点,在这个角的平分线上
29、角的平分线是到角的两边距离相等的所有点的集合
30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边
32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33、推论3等边三角形的各角都相等,并且每一个角都等于60°
34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35、推论1三个角都相等的三角形是等边三角形
36、推论2有一个角等于60°的等腰三角形是等边三角形
37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38、直角三角形斜边上的`中线等于斜边上的一半
39、定理线段垂直平分线上的点和这条线段两个端点的距离相等
高三常用的数学公式总结4
两角和公式
sin(A+B)=sinAcosB+cosAsinBsin(A—B)=sinAcosB—sinBcosA
cos(A+B)=cosAcosB—sinAsinBcos(A—B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1—tanAtanB)tan(A—B)=(tanA—tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB—1)/(ctgB+ctgA)ctg(A—B)=(ctgActgB+1)/(ctgB—ctgA)
倍角公式
tan2A=2tanA/(1—tan2A)ctg2A=(ctg2A—1)/2ctga
cos2a=cos2a—sin2a=2cos2a—1=1—2sin2a
半角公式
sin(A/2)=√((1—cosA)/2)sin(A/2)=—√((1—cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=—√((1+cosA)/2)
tan(A/2)=√((1—cosA)/((1+cosA))tan(A/2)=—√((1—cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1—cosA))ctg(A/2)=—√((1+cosA)/((1—cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A—B)2cosAsinB=sin(A+B)—sin(A—B)
2cosAcosB=cos(A+B)—sin(A—B)—2sinAsinB=cos(A+B)—cos(A—B)
sinA+sinB=2sin((A+B)/2)cos((A—B)/2cosA+cosB=2cos((A+B)/2)sin((A—B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA—tanB=sin(A—B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB—ctgA+ctgBsin(A+B)/sinAsinB
高三常用的数学公式总结5
常用的诱导公式有以下几组:
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=—sinα
cos(π+α)=—cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与—α的三角函数值之间的关系:
sin(—α)=—sinα
cos(—α)=cosα
tan(—α)=—tanα
cot(—α)=—cotα
公式四:
利用公式二和公式三可以得到π—α与α的三角函数值之间的关系:
sin(π—α)=sinα
cos(π—α)=—cosα
tan(π—α)=—tanα
cot(π—α)=—cotα
公式五:
利用公式一和公式三可以得到2π—α与α的三角函数值之间的关系:
sin(2π—α)=—sinα
cos(2π—α)=cosα
tan(2π—α)=—tanα
cot(2π—α)=—cotα
相关文章
文员工作总结优秀范文1000字2023-06-02 01:11:37
置业顾问工作总结1000字范文大全2023-06-16 04:49:29
物流个人转正工作总结(精选六篇)2023-06-13 16:14:09
高一政治最新知识点总结五篇分享2023-06-16 18:02:38
幼儿园交通安全活动总结范文(精选7篇)2023-06-10 17:15:13
幼儿园小班秋季学期个人教学工作总结2023-06-11 15:20:01
上海对外经贸大学和北京交通大学(威海校区)对比哪个好(排名分数线区2024-03-31 16:25:18
河北高考排名237950名物理能上什么大学(能报哪些学校)2024-03-31 16:19:23
山东城市建设职业学院在山东招生人数和招生计划 多少人2024-03-31 16:15:16
上海农林职业技术学院在湖南招生人数和招生计划 多少人2024-03-31 16:12:52
吉林农业科技学院在湖南招生人数和招生计划 多少人2024-03-31 16:09:19
安徽高考多少分可以上云南经贸外事职业学院 招生人数和最低分2024-03-31 16:04:52
幼儿园保育工作总结六篇2023-06-02 07:56:30
最新学校安全教育日活动总结范文2023-06-05 21:13:48
幼儿园小班九月份工作心得2023-06-08 09:19:43