北考网

福州初中中考数学考点

时间:2023-06-15 23:59:02 文/孙小飞 中考北考网www.beiweimall.com

福州初中中考数学考点1

★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。

☆内容提要☆

一、直线、相交线、平行线

1.线段、射线、直线三者的区别与联系

从"图形"、"表示法"、"界限"、"端点个数"、"基本性质"等方面加以分析。

2.线段的中点及表示

3.直线、线段的基本性质(用"线段的基本性质"论证"三角形两边之和大于第三边")

4.两点间的距离(三个距离:点-点;点-线;线-线)

5.角(平角、周角、直角、锐角、钝角)

6.互为余角、互为补角及表示方法

7.角的平分线及其表示

8.垂线及基本性质(利用它证明"直角三角形中斜边大于直角边")

9.对顶角及性质

10.平行线及判定与性质(互逆)(二者的区别与联系)

11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。

12.定义、命题、命题的组成

13.公理、定理

14.逆命题

二、三角形

分类:⑴按边分;

⑵按角分

1.定义(包括内、外角)

2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中,

3.三角形的主要线段

讨论:①定义②_线的交点-三角形的×心③性质

①高线②中线③角平分线④中垂线⑤中位线

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形

4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②专用方法

6.三角形的面积

⑴一般计算公式⑵性质:等底等高的三角形面积相等。

7.重要辅助线

⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线

8.证明方法

⑴直接证法:综合法、分析法

⑵间接证法-反证法:①反设②归谬③结论

⑶证线段相等、角相等常通过证三角形全等

⑷证线段倍分关系:加倍法、折半法

⑸证线段和差关系:延结法、截余法

⑹证面积关系:将面积表示出来

三、四边形

分类表:

1.一般性质(角)

⑴内角和:360°

⑵顺次连结各边中点得平行四边形。

推论1:顺次连结对角线相等的四边形各边中点得菱形。

推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。

⑶外角和:360°

2.特殊四边形

⑴研究它们的一般方法:

⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定

⑶判定步骤:四边形→平行四边形→矩形→正方形

┗→菱形--↑

⑷对角线的纽带作用:

3.对称图形

⑴轴对称(定义及性质);⑵中心对称(定义及性质)

4.有关定理:①平行线等分线段定理及其推论1、2

②三角形、梯形的中位线定理

③平行线间的距离处处相等。(如,找下图中面积相等的三角形)

5.重要辅助线:①常连结四边形的对角线;②梯形中常"平移一腰"、"平移对角线"、"作高"、"连结顶点和对腰中点并延长与底边相交"转化为三角形。

6.作图:任意等分线段。

福州初中中考数学考点2

学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程 —— 一元二次方程。“一元二次方程”一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。

本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,

“22.2降次——解一元二次方程”一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。

(1)在介绍配方法时,首先通过实际问题引出形如 的方程。这样的方程可以化为更为简单的形如 的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如 的方程。然后举例说明一元二次方程可以化为形如 的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。

(2)在介绍公式法时,首先借助配方法讨论方程 的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。

(3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。

“22.3实际问题与一元二次方程”一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

第23章 旋转

学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。本书中图形变换又增添了一名新成员――旋转。“旋转”一章就来认识这种变换,探索它的性质。在此基础上,认识中心对称和中心对称图形。

“23.1旋转”一节首先通过实例介绍旋转的概念。然后让学生探究旋转的性质。在此基础上,通过例题说明作一个图形旋转后的图形的方法。最后举例说明用旋转可以进行图案设计。

“23.2中心对称”一节首先通过实例介绍中心对称的概念。然后让学生探究中心对称的性质。在此基础上,通过例题说明作与一个图形成中心对称的图形的方法。这些内容之后,通过线段、平行四边形引出中心对称图形的概念。最后介绍关于原点对称的点的坐标的关系,以及利用这一关系作与一个图形成中心对称的图形的方法。

“23.3课题学习 图案设计”一节让学生探索图形之间的变换关系(平移、轴对称、旋转及其组合),灵活运用平移、轴对称、旋转的组合进行图案设计。

第24章 圆

圆是一种常见的图形。在“圆”这一章,学生将进一步认识圆,探索它的性质,并用这些知识解决一些实际问题。通过这一章的学习,学生的解决图形问题的能力将会进一步提高。

“24.1圆”一节首先介绍圆及其有关概念。然后让学生探究与垂直于弦的直径有关的结论,并运用这些结论解决问题。接下来,让学生探究弧、弦、圆心角的关系,并运用上述关系解决问题。最后让学生探究圆周角与圆心角的关系,并运用上述关系解决问题。

“24.2与圆有关的位置关系”一节首先介绍点和圆的三种位置关系、三角形的外心的概念,并通过证明“在同一直线上的三点不能作圆”引出了反证法。然后介绍直线和圆的三种位置关系、切线的概念以及与切线有关的结论。最后介绍圆和圆的位置关系。

“24.3正多边形和圆”一节揭示了正多边形和圆的关系,介绍了等分圆周得到正多边形的方法。

“24.4弧长和扇形面积”一节首先介绍弧长公式。然后介绍扇形及其面积公式。最后介绍圆锥的侧面积公式。

第25 章 概率初步

将一枚硬币抛掷一次,可能出现正面也可能出现反面,出现正面的可能性大还是出现反面的可能性大呢?学了“概率”一章,学生就能更好地认识这个问题了。掌握了概率的初步知识,学生还会解决更多的实际问题。

“25.1概率”一节首先通过实例介绍随机事件的概念,然后通过掷币问题引出概率的概念。

“25.2用列举法求概率”一节首先通过具体试验引出用列举法求概率的方法。然后安排运用这种方法求概率的例题。在例题中,涉及列表及画树形图。

“25.3利用频率估计概率”一节通过幼树成活率和柑橘损坏率等问题介绍了用频率估计概率的方法。

“25.4课题学习 键盘上字母的排列规律”一节让学生通过这一课题的研究体会概率的广泛应用。

福州初中中考数学考点3

★重点★一元一次、一元二次方程,二元一次方程组的解法;方程的有关应用题(特别是行程、工程问题)

☆内容提要☆

一、基本概念

1.方程、方程的解(根)、方程组的解、解方程(组)

2.分类:

二、解方程的依据-等式性质

1.a=b←→a+c=b+c

2.a=b←→ac=bc(c≠0)

三、解法

1.一元一次方程的解法:去分母→去括号→移项→合并同类项→

系数化成1→解。

2.元一次方程组的解法:⑴基本思想:"消元"⑵方法:①代入法

②加减法

四、一元二次方程

1.定义及一般形式:

2.解法:⑴直接开平方法(注意特征)

⑵配方法(注意步骤-推倒求根公式)

⑶公式法:

⑷因式分解法(特征:左边=0)

3.根的判别式:

4.根与系数顶的关系:

逆定理:若,则以为根的一元二次方程是:。

5.常用等式:

五、可化为一元二次方程的方程

1.分式方程

⑴定义

⑵基本思想:

⑶基本解法:①去分母法②换元法(如,)

⑷验根及方法

2.无理方程

⑴定义

⑵基本思想:

⑶基本解法:①乘方法(注意技巧!!)②换元法(例,)⑷验根及方法

3.简单的二元二次方程组

由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。

六、列方程(组)解应用题

一概述

列方程(组)解应用题是中学数_系实际的一个重要方面。其具体步骤是:

⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什

么。

⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。

⑸解方程及检验。

⑹答案。

综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

二常用的相等关系

1.行程问题(匀速运动)

基本关系:s=vt

⑴相遇问题(同时出发):

⑵追及问题(同时出发):

若甲出发t小时后,乙才出发,而后在B处追上甲,则

⑶水中航行:;

2.配料问题:溶质=溶液×浓度

溶液=溶质+溶剂

3.增长率问题:

4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位"1")。

5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。

三注意语言与解析式的互化

如,"多"、"少"、"增加了"、"增加为(到)"、"同时"、"扩大为(到)"、"扩大了"、……

又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。

四注意从语言叙述中写出相等关系。

如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。五注意单位换算

如,"小时""分钟"的换算;s、v、t单位的一致等。

福州初中中考数学考点4

一、相似三角形(7个考点)

考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小

考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小.

考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理

考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.

注意:被判定平行的一边不可以作为条件中的对应线段成比例使用.

考点3:相似三角形的概念

考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义.

考点4:相似三角形的判定和性质及其应用

考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用.

考点5:三角形的重心

考核要求:知道重心的定义并初步应用.

考点6:向量的有关概念

考点7:向量的加法、减法、实数与向量相乘、向量的线性运算

考核要求:掌握实数与向量相乘、向量的线性运算

二、锐角三角比(2个考点)

考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值.

考点9:解直角三角形及其应用

考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形.

三、二次函数(4个考点)

考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数

考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义.

考点11:用待定系数法求二次函数的解析式

考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法.

注意求函数解析式的步骤:一设、二代、三列、四还原.

考点12:画二次函数的图像

考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像.

考点13:二次函数的图像及其基本性质

考核要求:(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质.

注意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式.

四、圆的相关概念(6个考点)

考点14:圆心角、弦、弦心距的概念

考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断.

考点15:圆心角、弧、弦、弦心距之间的关系

考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明.

考点16:垂径定理及其推论

垂径定理及其推论是圆这一板块中最重要的知识点之一.

考点17:直线与圆、圆与圆的位置关系及其相应的数量关系

直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映.在圆与圆的位置关系中,常需要分类讨论求解.

考点18:正多边形的有关概念和基本性质

考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题.

考点19:画正三、四、六边形.

考核要求:能用基本作图工具,正确作出正三、四、六边形.

福州初中中考数学考点5

1、圆的有关概念:

(1)、确定一个圆的要素是圆心和半径。

(2)①连结圆上任意两点的线段叫做弦。②经过圆心的弦叫做直径。③圆上任意两点间的部分叫做圆弧,简称弧。④小于半圆周的圆弧叫做劣弧。⑤大于半圆周的圆弧叫做优弧。⑥在同圆或等圆中,能够互相重合的弧叫做等弧。⑦顶点在圆上,并且两边和圆相交的角叫圆周角。⑧经过三角形三个顶点可以画一个圆,并且只能画一个,经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三角形各边中垂线的交点;直角三角形外接圆半径等于斜边的一半。⑨与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。

2、圆的有关性质

(1)定理在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等,所对的弦的弦心距相等。推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。

(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

(3)圆周角定理:一条弧所对的圆周角等于该弧所对的圆心角的一半。推论1在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。推论2半圆或直径所对的圆周角都相等,都等于90。90的圆周角所对的弦是圆的直径。推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

(4)切线的判定与性质:判定定理:经过半径的外端且垂直与这条半径的直线是圆的切线。性质定理:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点切垂直于切线的直线必经过圆心。

(5)定理:不在同一条直线上的三个点确定一个圆。

(6)圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长;切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角。

(7)圆内接四边形对角互补,一个外角等于内对角;圆外切四边形对边和相等;

(8)弦切角定理:弦切角等于它所它所夹弧对的圆周角。

(9)和圆有关的比例线段:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。从圆外一点引圆的两条割线,这一点到每条割线与圆交点的两条线段长的积相等。

(10)两圆相切,连心线过切点;两圆相交,连心线垂直平分公共弦。

相关文章

江西中考数学考点2023-06-19 00:54:56

中考数学考点整合2023-06-02 12:28:14

初三数学知识考点五篇2023-06-17 10:32:43

初中数学考点大纲2023-06-03 22:44:57

大连中考数学考点梳理2023-06-02 12:07:58

河南省初中数学中考考点2023-06-07 21:07:24

上海对外经贸大学和北京交通大学(威海校区)对比哪个好(排名分数线区2024-03-31 16:25:18

河北高考排名237950名物理能上什么大学(能报哪些学校)2024-03-31 16:19:23

山东城市建设职业学院在山东招生人数和招生计划 多少人2024-03-31 16:15:16

上海农林职业技术学院在湖南招生人数和招生计划 多少人2024-03-31 16:12:52

吉林农业科技学院在湖南招生人数和招生计划 多少人2024-03-31 16:09:19

安徽高考多少分可以上云南经贸外事职业学院 招生人数和最低分2024-03-31 16:04:52

达州中考录取率多少,各高中录戎数线统计2023-06-06 21:56:40

广安中考录取率多少,各高中录戎数线统计2023-06-08 08:54:58

宜宾中考录取率多少,各高中录戎数线统计2023-06-19 04:31:29