北考网

济宁中考数学题型和考点

时间:2023-06-08 00:50:52 文/黄飞 中考北考网www.beiweimall.com

济宁中考数学题型和考点

一、圆及圆的相关量的定义

1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

2.圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有公共点为相切,这条直线叫做圆的切线,这个的公共点叫做切点。

6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。

二、有关圆的字母表示方法

圆--⊙ 半径—r 弧--⌒ 直径—d

扇形弧长/圆锥母线—l 周长—C 面积—S三、有关圆的基本性质与定理

1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):

P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO

2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

5.一条弧所对的圆周角等于它所对的圆心角的一半。

6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

7.不在同一直线上的3个点确定一个圆。

8.一个三角形有确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。

9.直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距离):

AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO

10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

11.圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):

外离P>R+r;外切P=R+r;相交R-r

三、有关圆的计算公式

1.圆的周长C=2πr=πd

2.圆的面积S=s=πr?

3.扇形弧长l=nπr/180

4.扇形面积S=nπr? /360=rl/2

5.圆锥侧面积S=πrl

四、圆的方程

1.圆的标准方程

在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是

(x-a)^2+(y-b)^2=r^2

2.圆的一般方程

把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是

x^2+y^2+Dx+Ey+F=0

和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2

相关知识:圆的离心率e=0.在圆上任意一点的曲率半径都是r.

五、圆与直线的位置关系判断

链接:圆与直线的位置关系(一。5)

平面内,直线Ax+By+C=O与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是

讨论如下2种情况:

(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0.

利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:

如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切

如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离

(2)如果B=0即直线为Ax+C=0,即x=-C/A.它平行于y轴(或垂直于x轴)

将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2

令y=b,求出此时的两个x值x1,x2,并且我们规定x1

当x=-C/Ax2时,直线与圆相离

当x1

当x=-C/A=x1或x=-C/A=x2时,直线与圆相切

圆的定理:

1.不在同一直线上的三点确定一个圆。

2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1.①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2.圆的两条平行弦所夹的弧相等

3.圆是以圆心为对称中心的中心对称图形

4.圆是定点的距离等于定长的点的集合

5.圆的内部可以看作是圆心的距离小于半径的点的集合

6.圆的外部可以看作是圆心的距离大于半径的点的集合

7.同圆或等圆的半径相等

8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

11.定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角

12.①直线L和⊙O相交 d

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r

13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

14.切线的性质定理 圆的切线垂直于经过切点的半径

15.推论1 经过圆心且垂直于切线的直线必经过切点

中考数学题型和考点分析

1.解直角三角形

1.1.锐角三角函数

锐角a的正弦、余弦和正切统称∠a的三角函数。

如果∠a是Rt△ABC的一个锐角,则有

1.2.锐角三角函数的计算

1.3.解直角三角形

在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。

2.直线与圆的位置关系

2.1.直线与圆的位置关系

当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。

直线与圆的位置关系有以下定理:

直线与圆相切的判定定理:

经过半径的外端并且垂直这条半径的直线是圆的切线。

圆的切线性质:

经过切点的半径垂直于圆的切线。

2.2.切线长定理

从圆外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。

切线长定理:过圆外一点所作的圆的两条切线长相等。

2.3.三角形的内切圆

与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。三角形的内心是三角形的三条角平分线的交点。

3.三视图与表面展开图

3.1.投影

物体在光线的照射下,在某个平面内形成的影子叫做投影。光线叫做投影线,投影所在的平面叫做投影面。由平行的投射线所形成的投射叫做平行投影。

可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。

3.2.简单几何体的三视图

物体在正投影面上的正投影叫做主视图,在水平投影面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。

主视图、左视图和俯视图合称三视图。

产生主视图的投影线方向也叫做主视方向。

3.3.由三视图描述几何体

三视图不仅反映了物体的形状,而且反映了各个方向的尺寸大小。

3.4.简单几何体的表面展开图

将几何体沿着某些棱“剪开”,并使各个面连在一起,铺平所得到的平面图形称为几何体的表面展开图。

圆柱可以看做由一个矩形ABCD绕它的一条边BC旋转一周,其余各边所成的面围成的几何体。AB、CD旋转所成的面就是圆柱的两个底面,是两个半径相同的圆。AD旋转所成的面就是圆柱的侧面,AD不论转动到哪个位置,都是圆柱的母线。

圆锥可以看做将一根直角三角形ACB绕它的一条直角边(AC)旋转一周,它的其余各边所成的面围成的一个几何体。直角边BC旋转所成的面就是圆锥的底面,斜边AB旋转所成的面就是圆锥的侧面,斜边AB不论转动到哪个位置,都叫做圆锥的母线。

中考数学题型和考点

求根公式

二次函数表达式的右边通常为二次三项式。

求根公式

x是自变量,y是x的二次函数

x1,x2=[-b±(√(b^2-4ac))]/2a

(即一元二次方程求根公式)(如右图)

求根的方法还有因式分解法和配方法

在平面直角坐标系中作出二次函数y=2x的平方的图像,

可以看出,二次函数的图像是一条永无止境的抛物线。

不同的二次函数图像

如果所画图形准确无误,那么二次函数将是由一般式平移得到的。

注意:草图要有1本身图像,旁边注明函数。

2画出对称轴,并注明X=什么

3与X轴交点坐标,与Y轴交点坐标,顶点坐标。抛物线的性质

轴对称

1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

对称轴与抛物线的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

顶点

2.抛物线有一个顶点P,坐标为P(-b/2a,4ac-b^2;)/4a)

当-b/2a=0时,P在y轴上;当Δ=b^2;-4ac=0时,P在x轴上。

开口

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

决定对称轴位置的因素

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号

当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要异号

可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。

事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。

决定抛物线与y轴交点的因素

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

抛物线与x轴交点个数

6.抛物线与x轴交点个数

Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

_______

Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

当a>0时,函数在x=-b/2a处取得最小值f(-b/2a)=4ac-b2/4a;在{x|x<-b/2a}上是减函数,在

{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变

当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)

特殊值的形式

7.特殊值的形式

①当x=1时y=a+b+c

②当x=-1时y=a-b+c

③当x=2时y=4a+2b+c

④当x=-2时y=4a-2b+c

二次函数的性质

8.定义域:R

值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,

正无穷);②[t,正无穷)

奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数。

周期性:无

解析式:

①y=ax^2+bx+c[一般式]

⑴a≠0

⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;

⑶极值点:(-b/2a,(4ac-b^2)/4a);

⑷Δ=b^2-4ac,

Δ>0,图象与x轴交于两点:

([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);

Δ=0,图象与x轴交于一点:

(-b/2a,0);

Δ<0,图象与x轴无交点;

②y=a(x-h)^2+k[顶点式]

此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;

③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)

对称轴X=(X1+X2)/2当a>0且X≧(X1+X2)/2时,Y随X的增大而增大,当a>0且X≦(X1+X2)/2时Y随X

的增大而减小

此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连

用)。

交点式是Y=A(X-X1)(X-X2)知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1X2值。

相关文章

长沙市中考物理考点总结2023-06-06 18:17:53

海南省中考物理考点梳理2023-06-03 08:43:08

河北物理中考考点归纳2023-06-08 16:08:06

初中物理沪科版考点总结2023-06-15 20:41:06

青岛中考物理考点2023-06-04 07:13:31

初中物理力的基础知识有哪些2023-06-05 02:43:55

上海对外经贸大学和北京交通大学(威海校区)对比哪个好(排名分数线区2024-03-31 16:25:18

河北高考排名237950名物理能上什么大学(能报哪些学校)2024-03-31 16:19:23

山东城市建设职业学院在山东招生人数和招生计划 多少人2024-03-31 16:15:16

上海农林职业技术学院在湖南招生人数和招生计划 多少人2024-03-31 16:12:52

吉林农业科技学院在湖南招生人数和招生计划 多少人2024-03-31 16:09:19

安徽高考多少分可以上云南经贸外事职业学院 招生人数和最低分2024-03-31 16:04:52

达州中考录取率多少,各高中录戎数线统计2023-06-06 21:56:40

广安中考录取率多少,各高中录戎数线统计2023-06-08 08:54:58

宜宾中考录取率多少,各高中录戎数线统计2023-06-19 04:31:29