人教版2021最新小学数学一年级上册全册教案1
教学目的:通过混合练习,加深学生对正比例和反比例的意义的理解,提高判断能力。
教学过程:
一、引入
教师:前面我们学习了正比例和反比例的意义.上节课我们又把它们进行了比较,你们会根据正比例和反比例的意义,比较熟练地判断两种相关联的量是成正比例还是成反比例吗?
二、课堂练习
1.分析、研究第3题。
让学生先说出长方形的长、宽、面积三个量中.其中一个量与另外两个量的关系,教师板书出来:长宽=面积
= 长 =宽
提问:
当面积一定时,长和宽成什么比例关系?
当长一定时,面积和宽成什么比例关系?
当宽一定时,面积和长成什么比例关系?
教师:通过上面的分析,我们知道:要判断三种相关联的量在什么条件下组成哪种比例关系,我们可以先写出它们中的一种量与另外两种量的关系,再进行分析,。
2.第4题,让学生仿照第3题的方法做。订正后,教师板书如下:
每次运货吨数运货次数=运货的总吨数(一定) 每次运货吨数 与运货次数 =运货次数(一定) 成反比例关 系。
运货的总吨 =每次运货吨数(一定) 数与运货次 数成正比例 关系
3.第5题,让学生独立做,教师巡视,注意个别辅导。
4.第6题,先让学生自己判断,然后指名回答,第(1)小题成反比例,第(2)、(4)、(6)小题成正比例,第(3)、(5)小题不成比例。
5.第7题,学生独立解答后,选一题说说是怎样解的。
6.学有余力的学生做第8题。
人教版2021最新小学数学一年级上册全册教案2
三维目标
一、知识与技能
1.能灵活列反比例函数表达式解决一些实际问题.
2.能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题.
二、过程与方法
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.
2. 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.
三、情感态度与价值观
1.积极参与交流,并积极发表意见.
2.体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.
教学重点
掌握从物理问题中建构反比例函数模型.
教学难点
从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想.
教具准备
多媒体课件.
教学过程
一、创设问题情境,引入新课
活动1
问 属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用.下面的例子就是其中之一.
在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.
(1)求I与R之间的函数关系式;
(2)当电流I=0.5时,求电阻R的值.
设计意图:
运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力.
师生行为:
可由学生独立思考,领会反比例函数在物理学中的综合应用.
教师应给“学困生”一点物理学知识的引导.
师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值.
生:(1)解:设I=kR ∵R=5,I=2,于是
2=k5 ,所以k=10,∴I=10R .
(2) 当I=0.5时,R=10I=100.5 =20(欧姆).
师:很好!“给我一个支点,我可以把地球撬动.”这是哪一位科学家的名言?这里蕴涵着什么 样的原理呢?
生:这是古希腊科学家阿基米德的名言.
师:是的.公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”: 若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;
阻力×阻力臂=动力×动力臂(如下图)
下面我们就来看一例子.
二、讲授新课
活动2
小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米.
(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?
(2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少?
设计意图:
物理学中的很多量之间的变化是反比例函数关系.因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用.
师生行为:
先由学生根据“杠杆定律”解决上述问题.
教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系.
教师在此活动中应重点关注:
①学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系;
②学生能否面对困难,认真思考,寻找解题的途径;
③学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣.
师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题.
生:解:(1)根据“杠杆定律” 有
Fl=1200×0.5.得F =600l
当l=1.5时,F=6001.5 =400.
因此,撬动石头至少需要400牛顿的力.
(2)若想使动力F不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有
Fl=600,
l=600F .
当F=400×12 =200时,
l=600200 =3.
3-1.5=1.5(米)
因此,若想用力不超过400牛顿的一半,则动力臂至少要如长1.5米.
生:也可用不等式来解,如下:
Fl=600,F=600l .
而F≤400×12 =200时.
600l ≤200
l≥3.
所以l-1.5≥3-1.5=1.5.
即若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米.
生:还可由函数图象,利用反比例函数的性质求出.
师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题:
用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力?
生:因为阻力和阻力臂不变,设动力臂为l,动力为F,阻力×阻力臂=k(常数且k>0),所以根据“杠杆定理”得Fl=k,即F=kl (k为常数且k>0)
根据反比例函数的性质,当k>O时,在第一象限F随l的增大而减小,即动力臂越长越省力.
师:其实反比例函数在实际运用中非常广泛.例如在解决经济预算问题中的应用.
活动3
问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)元成反比例.又当x=0.65元时,y=0.8.(1)求y与x之间的函数关系式;(2)若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的纯收人多少?
设计意图:
在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题.
师生行为:
由学生先独立思考,然后小组内讨论完成.
教师应给予“学困生”以一定的帮助.
生:解:(1)∵y与x -0.4成反比例,
∴设y=kx-0.4 (k≠0).
把x=0.65,y=0.8代入y=kx-0.4 ,得
k0.65-0.4 =0.8.
解得k=0.2,
∴y=0.2x-0.4=15x-2
∴y与x之间的函数关系为y=15x-2
(2)根据题意,本年度电力部门的纯收入为
(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(亿元)
答:本年度的纯收人为0.6亿元,
师生共析:
(1)由题目提供的信息知y与(x-0.4)之间是反比例函数关系,把x-0.4看成一个变量,于是可设出表达式,再由题目的条件x=0.65时,y=0.8得出字母系数的值;
(2)纯收入=总收入-总成本.
三、巩固提高
活动4
一定质量的二氧化碳气体,其体积y(m3)是密度ρ(kg/m3)的反比例函数,请根据下图中的已知条件求出当密度ρ=1.1 kg/m3时二氧化碳气体的体积V的值.
设计意图:
进一步体现物理和反比例函数的关系.
师生行为
由学生独立完成,教师讲评.
师:若要求出ρ=1.1 kg/m3时,V的值,首先V和ρ的函数关系.
生:V和ρ的反比例函数关系为:V=990ρ .
生:当ρ=1.1kg/m3根据V=990ρ ,得
V=990ρ =9901.1 =900(m3).
所以当密度ρ=1. 1 kg/m3时二氧化碳气体的气体为900m3.
四、课时小结
活动5
你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解 析式,再根据解析式解得.
设计意图:
这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性.
师生行为:
学生可分小组活动,在小组内交流收获, 然后由小组代表在全班交流.
教师组织学生小结.
反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础.用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系.
板书设计
17.2 实际问题与反比例函数(三)
1.
2.用反比例函数的知识解释:在我们使 用撬棍时,为什么动 力臂越长越省力?
设阻力为F1,阻力臂长为l1,所以F1×l1=k(k为常数且k>0).动力和动力臂分别为F,l.则根据杠杆定理,
Fl=k 即F=kl (k>0且k为常数).
由此可知F是l的反比例函数,并且当k>0时,F随l的增大而减小.
活动与探究
学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边y与另一边x之间的函数关系式如下图所示.
(1)绿化带面积是多少?你能写出这一函数表达式吗?
(2)完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内?
x(m) 10 20 30 40
y(m)
过程:点A(40,10)在反比例函数图象上说明点A的横纵坐标满足反比例函数表达式,代入可求得反比例函数k的值.
结果:(1)绿化带面积为10×40=400(m2)
设该反比例函数的表达式为y=kx ,
∵图象经过点A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.
∴函数表达式为y=400x .
(2)把x=10,20,30,40代入表达式中,求得y分别为40,20,403 ,10.从图中可以看出。若长不超过40m,则它的宽应大于等于10m。
人教版2021最新小学数学一年级上册全册教案3
教学设计思路
由对现实问题的讨论抽象出反比例函数的概念,通过对问题的解决进一步明确:1.反比例函数的意义;2.反比例函数的概念;3.反比例函数的一般形式。
教学目标
知识与技能
1.从现实情境和已有的知识、经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,表述反比例函数的概念。
过程与方法
1.经历对两个变量之间相依关系的讨论,培养辩证唯物主义观点。
2.经历抽象反比例函数概念的过程,发展抽象思维能力,提高数学化意识。
情感态度与价值观
1.认识到数学知识是有联系的,逐步感受数学内容的系统性;
2.通过分组讨论,培养合作交流意识和探索精神。
教学重点和难点
理解和领会反比例函数的概念。
教学难点
领悟反比例函数的概念。
教学方法
启发引导、分组讨论
课时安排
1课时
教学媒体
课件
教学过程设计
复习引入
1.什么叫一次函数?一次函数的一般形式是怎样的?什么叫正比例函数?它与算术中的正比例有怎样的关系?
2.在上一学段,我们研究了现实生活中成反比例的两个量
人教版2021最新小学数学一年级上册全册教案4
从容说课
我们学习知识的目的就是为了应用,如能把书本上学到的知识运用到实际生活中,这就说明确实把知识学好了,会用了
用函数观点处理实际问题的关键在于分析实际情境、建立函数模型,并进一步提出明确的数学问题,教学时应注意分析的过程,即将实际问题置于已有知识背景之中,用数学知识重新解释这是什么?可以看成什么?让学生逐步学会用数学的眼光考查实际问题.同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想
此外,解决实际问题时.还要引导学生体会知识之间的联系以及知识的综合运用
教学目标
(一)教学知识点
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程
2.体会数学与现实生活的紧密联系,增强应用意识.提高运用代数方法解决问题的能力
(二)能力训练要求
通过对反比例函数的应用,培养学生解决问题的能力
(三)情感与价值观要求
经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题。理解问题,并能综合运用所学的知识和技能解决问题.发展应用意识,初步认识数学与人类生活的密切联系及对人类历史发展的作用
教学重点
用反比例函数的知识解决实际问题
教学难点
如何从实际问题中抽象出数学问题、建立数学模型,用数学知识去解决实际问题
教学方法
教师引导学生探索法
教学过程
Ⅰ.创设问题情境,引入新课
[师]有关反比例函数的表达式,图象的特征我们都研究过了,那么,我们学习它们的目的是什么呢?
[生]是为了应用
[师]很好;学习的目的是为了用学到的知识解决实际问题.究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学
Ⅱ. 新课讲解
某校科技小组进行野外考察,途中遇到片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务;你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600 N,那么
(1)用含S的代数式表示p,p是S的反比例函数吗?为什么?
(2)当木板画积为 0.2 m2时.压强是多少?
(3)如果要求压强不超过6000 Pa,木板面积至少要多大?
(4)在直角坐标系中,作出相应的函数图象
(5)清利用图象对(2)和(3)作出直观解释,并与同伴进行交流
[师]分析:首先要根据题意分析实际问题中的两个变量,然后看这两个变量之间存在的关系,从而去分析它们之间的关系是否为反比例函数关系,若是则可用反比例函数的有关知识去解决问题
请大家互相交流后回答
[生](1)由p=得p=
p是S的反比例函数,因为给定一个S的值.对应的就有唯一的一个p值和它对应,根据函数定义,则p是S的反比例函数
(2)当S= 0.2 m2时, p==3000(Pa)
当木板面积为 0.2m2时,压强是3000Pa.
(3)当p=6000 Pa时,
S==0.1(m2)
如果要求压强不超过6000 Pa,木板面积至少要 0.1 m2
(4)图象如下:
(5)(2)是已知图象上某点的横坐标为0.2,求该点的纵坐标;(3)是已知图象上点的纵坐标不大于6000,求这些点所处的位置及它们横坐标的取值范围
[师]这位同学回答的很好,下面我要提一个问题,大家知道反比例函数的图象是两支双曲线、它们要么位于第一、三象限,要么位于第二、四象限,从(1)中已知p=>0,所以图象应位于第一、三象限,为什么这位同学只画出了一支曲线,是不是另一支曲线丢掉了呢?还是因为题中只给出了第一象限呢?
[生]第三象限的曲线不存在,因为这是实际问题,S不可能取负数,所以第三象限的曲线不存在
[师]很好,那么在(1)中是不是应该有条件限制呢?
[生]是,应为p= (S>0).
做一做
1、蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R(Ω)之间的函数关系如下图;
(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?
(2)完成下表,并回答问题:如果以此蓄电池为电源的用电器限制电流不得超过 10A,那么用电器的可变电阻应控制在什么范围内?
[师]从图形上来看,I和R之间可能是反比例函数关系.电压U就相当于反比例函数中的k.要写出函数的表达式,实际上就是确定k(U),只需要一个条件即可,而图中已给出了一个点的坐标,所以这个问题就解决了,填表实际上是已知自变量求函数值.
[生]解:(1)由题意设函数表达式为I=
∵A(9,4)在图象上,
∴U=IR=36
∴表达式为I=
蓄电池的电压是36伏
(2)表格中从左到右依次是:12,9,7.2,6,4.5,3.6
电源不超过 10 A,即I最大为 10 A,代入关系式中得R=3.6,为最小电阻,所以用电器的可变电阻应控制在R≥3.6这个范围内
2、如下图,正比例函数y=k1x的图象与反比例函数y=的图象相交于A,B两点,其中点A的坐标为(,2)
(1)分别写出这两个函数的表达式:
(2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流
[师]要求这两个函数的表达式,只要把A点的坐标代入即可求出k1,k2,求点B的
坐标即求y=k1x与y=的交点
[生]解:(1)∵A(,2)既在y=k1x图象上,又在y=的图象上
∴k1=2,2=
∴k1=2,k2=6
∴表达式分别为y=2x,y=
∴x2=3
∴x=±
当x= ?时,y= ?2
∴B(?,?2)
Ⅲ.课堂练习
1.某蓄水池的排水管每时排水 8 m3,6 h可将满池水全部排空
(1)蓄水池的容积是多少?
(2)如果增加排水管,使每时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化?
(3)写出t与Q之间的关系式;
(4)如果准备在5 h内将满池水排空,那么每时的排水量至少为多少?
(5)已知排水管的最大排水量为每时 12m3,那么最少多长时间可将满池水全部排空?
解:(1)8×6=48(m3)
所以蓄水池的容积是 48 m3
(2)因为增加排水管,使每时的排水量达到Q(m3),所以将满池水排空所需的时间t(h)将减少.
(3)t与Q之间的关系式为t=
(4)如果准备在5 h内将满池水排空,那么每时的排水量至少为=9.6(m3)
(5)已知排水管的最大排水量为每时 12m3,那么最少要=4小时可将满池水全部排空.
Ⅳ、课时小结
节课我们学习了反比例函数的应用.具体步骤是:认真分析实际问题中变量之间的关系,建立反比例函数模型,进而用反比例函数的有关知识解决实际问题.
Ⅴ课后作业
习题5.4.
板书设计
§ 5.3反比例函数的应用
一、1.例题讲解
2.做一做
二、课堂练习
三、课时小节
四、课后作业(习题5.4)
人教版2021最新小学数学一年级上册全册教案5
教学目标
1.使学生能正确判断应用题中涉及的量成什么比例关系.
2.使学生能利用正、反比例的意义正确解答应用题.
3.培养学生的判断推理能力和分析能力.
教学重点
使学生能正确判断应用题中的数量之间存在什么样的比例关系,并能利用正反比例的意义来列出含有未知数的等式,从而正确利用比例知识解答应用题.
教学难点
利用正反比例的意义正确列出等式.
教学过程
一、复习准备.(课件演示:比例的应用)
(一)判断下面每题中的两种量成什么比例关系?
1.速度一定,路程和时间.
2.路程一定,速度和时间.
3.单价一定,总价和数量.
4.每小时耕地的公顷数一定,耕地的总公顷数和时间.
5.全校学生做操,每行站的人数和站的行数.
(二)引入新课
我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题.这节课我们就来学习比例的应用.
教师板书:比例的应用
二、新授教学.
(一)教学例1(课件演示:比例的应用)
例1.一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时.甲乙两地之间的公路长多少千米?
1.学生利用以前的方法独立解答.
140÷2×5
=70×5
=350(千米)
2.利用比例的知识解答.
(1)思考:这道题中涉及哪三种量?
哪种量是一定的?你是怎样知道的?
行驶的路程和时间成什么比例关系?
教师板书:速度一定,路程和时间成正比例
教师追问:两次行驶的路程和时间的什么相等?
怎么列出等式?
解:设甲乙两地间的公路长 千米.
=
2 =140×5
=350
答:两地之间的公路长350千米.
3.怎样检验这道题做得是否正确?
4.变式练习
一辆汽车2小时行驶140千米,甲乙两地之间的`公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?
(二)教学例2(课件演示:比例的应用)
例2.一辆汽车从甲地开往乙地,每小时行70千米,5小时到达.如果要4小时到达,每小时要行多少千米?
1.学生利用以前的方法独立解答.
70×5÷4
=350÷4
=87.5(千米)
2.那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)
这道题里的路程是一定的,_________和_________成_________比例.
所以两次行驶的_________和_________的_________是相等的.
3.如果设每小时需要行驶 千米,根据反比例的意义,谁能列出方程?
4 =70×5
=87.5
答:每小时需要行驶87.5千米.
4.变式练习
一辆汽车从甲地开往乙地,每小时行70千米,5小时到达.如果每小时行87.5千米,需要几小时到达?
三、课堂小结.
用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程.
四、课堂练习.(课件演示:比例的应用)
(一)食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)
(二)同学们做广播操,每行站20人,正好站18行.如果每行站24人,可以站多少行?
(三)先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答.
1.王师傅要生产一批零件,每小时生产50个,需要4小时完成,_______,_______?
2.王师傅4小时生产了200个零件,照这样计算,_______?
五、课后作业 .
1.一台拖拉机2小时耕地1.25公顷,照这样计算,8小时可以耕地多少公顷?
2.用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本.如果每本16张,可以装订多少本?
3.某种型号的钢滚珠,3个重22.5克,现有一些这种型号的滚珠,共重945千克,一共有多少个?
六、板书设计 .
相关文章
最新小学数学人教版一年级上册教案2023-06-18 21:53:46
人教版一年级上册数学教案模板2023-06-04 01:55:04
新人教版一年级下册数学分类教案模板2023-06-17 20:27:27
四年级下期数学教案文案2023-06-17 13:37:46
四年级上册数学教案角的度量范文2023-06-15 07:18:17
六年级下学期数学教学工作总结报告2023-06-14 08:38:26
上海对外经贸大学和北京交通大学(威海校区)对比哪个好(排名分数线区2024-03-31 16:25:18
河北高考排名237950名物理能上什么大学(能报哪些学校)2024-03-31 16:19:23
山东城市建设职业学院在山东招生人数和招生计划 多少人2024-03-31 16:15:16
上海农林职业技术学院在湖南招生人数和招生计划 多少人2024-03-31 16:12:52
吉林农业科技学院在湖南招生人数和招生计划 多少人2024-03-31 16:09:19
安徽高考多少分可以上云南经贸外事职业学院 招生人数和最低分2024-03-31 16:04:52
小学数学上册二年级教案最新例文2023-06-09 21:16:26
新版北师大版二年级下册数学教案最新模板2023-06-04 01:07:32
最新一年级数学跷跷板教案模板2023-06-06 16:30:46