高一数学教案大全2021模板1
(一)教学目标
1.知识与技能
(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.
(2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。
(3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。
2.过程与方法
通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力.
3.情感、态度与价值观
通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值.
(二)教学重点与难点
重点:交集、并集运算的含义,识记与运用.
难点:弄清交集、并集的含义,认识符号之间的区别与联系
(三)教学方法
在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合.
(四)教学过程
教学环节教学内容师生互动设计意图
提出问题引入新知思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似“加法”运算.
(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6}
(2)A={x|x是有理数},
B={x|x是无理数},
C={x|x是实数}.
师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,探究集合是否有相应运算.
生:集合A与B的元素合并构成C.
师:由集合A、B元素组合为C,这种形式的组合就是为集合的并集运算.生疑析疑,
导入新知
形成
概念
思考:并集运算.
集合C是由所有属于集合A或属于集合B的元素组成的,称C为A和B的并集.
定义:由所有属于集合A或集合B的元素组成的集合.称为集合A与B的并集;记作:A∪B;读作A并B,即A∪B={x|x∈A,或x∈B},Venn图表示为:
师:请同学们将上述两组实例的共同规律用数学语言表达出来.
学生合作交流:归纳→回答→补充或修正→完善→得出并集的定义.在老师指导下,学生通过合作交流,探究问题共性,感知并集概念,从而初步理解并集的含义.
应用举例例1设A={4,5,6,8},B={3,5,7,8},求A∪B.
例2设集合A={x|–1<x<2},集合b={x|1<x<3},求a∪b.< p="">
例1解:A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.
例2解:A∪B={x|–1<x<2}∪{x|1<x<3}={x=–1<x<3}.< p="">
师:求并集时,两集合的相同元素如何在并集中表示.
生:遵循集合元素的互异性.
师:涉及不等式型集合问题.
注意利用数轴,运用数形结合思想求解.
生:在数轴上画出两集合,然后合并所有区间.同时注意集合元素的互异性.学生尝试求解,老师适时适当指导,评析.
固化概念
提升能力
探究性质①A∪A=A,②A∪=A,
③A∪B=B∪A,
④∪B,∪B.
老师要求学生对性质进行合理解释.培养学生数学思维能力.
形成概念自学提要:
①由两集合的所有元素合并可得两集合的并集,而由两集合的公共元素组成的集合又会是两集合的一种怎样的运算?
②交集运算具有的运算性质呢?
交集的定义.
由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集;记作A∩B,读作A交B.
即A∩B={x|x∈A且x∈B}
Venn图表示
老师给出自学提要,学生在老师的引导下自我学习交集知识,自我体会交集运算的含义.并总结交集的性质.
生:①A∩A=A;
②A∩=;
③A∩B=B∩A;
④A∩,A∩.
师:适当阐述上述性质.
自学辅导,合作交流,探究交集运算.培养学生的自学能力,为终身发展培养基本素质.
应用举例例1(1)A={2,4,6,8,10},
B={3,5,8,12},C={8}.
(2)新华中学开运动会,设
A={x|x是新华中学高一年级参加百米赛跑的同学},
B={x|x是新华中学高一年级参加跳高比赛的同学},求A∩B.
例2设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系.学生上台板演,老师点评、总结.
例1解:(1)∵A∩B={8},
∴A∩B=C.
(2)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合.所以,A∩B={x|x是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.
例2解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.
(1)直线l1,l2相交于一点P可表示为L1∩L2={点P};
(2)直线l1,l2平行可表示为
L1∩L2=;
(3)直线l1,l2重合可表示为
L1∩L2=L1=L2.提升学生的动手实践能力.
归纳总结并集:A∪B={x|x∈A或x∈B}
交集:A∩B={x|x∈A且x∈B}
性质:①A∩A=A,A∪A=A,
②A∩=,A∪=A,
③A∩B=B∩A,A∪B=B∪A.学生合作交流:回顾→反思→总理→小结
老师点评、阐述归纳知识、构建知识网络
课后作业1.1第三课时习案学生独立完成巩固知识,提升能力,反思升华
备选例题
例1已知集合A={–1,a2+1,a2–3},B={–4,a–1,a+1},且A∩B={–2},求a的值.
【解析】法一:∵A∩B={–2},∴–2∈B,
∴a–1=–2或a+1=–2,
解得a=–1或a=–3,
当a=–1时,A={–1,2,–2},B={–4,–2,0},A∩B={–2}.
当a=–3时,A={–1,10,6},A不合要求,a=–3舍去
∴a=–1.
法二:∵A∩B={–2},∴–2∈A,
又∵a2+1≥1,∴a2–3=–2,
解得a=±1,
当a=1时,A={–1,2,–2},B={–4,0,2},A∩B≠{–2}.
当a=–1时,A={–1,2,–2},B={–4,–2,0},A∩B={–2},∴a=–1.
例2集合A={x|–1<x<1},b={x|x<a},< p="">
(1)若A∩B=,求a的取值范围;
(2)若A∪B={x|x<1},求a的取值范围.
【解析】(1)如下图所示:A={x|–1<x<1},b={x|x<a},且a∩b=,< p="">
∴数轴上点x=a在x=–1左侧.
∴a≤–1.
(2)如右图所示:A={x|–1<x<1},b={x|x<a}且a∪b={x|x<1},< p="">
∴数轴上点x=a在x=–1和x=1之间.
∴–1<a≤1.< p="">
例3已知集合A={x|x2–ax+a2–19=0},B={x|x2–5x+6=0},C={x|x2+2x–8=0},求a取何实数时,A∩B与A∩C=同时成立?
【解析】B={x|x2–5x+6=0}={2,3},C={x|x2+2x–8=0}={2,–4}.
由A∩B和A∩C=同时成立可知,3是方程x2–ax+a2–19=0的解.将3代入方程得a2–3a–10=0,解得a=5或a=–2.
当a=5时,A={x|x2–5x+6=0}={2,3},此时A∩C={2},与题设A∩C=相矛盾,故不适合.
当a=–2时,A={x|x2+2x–15=0}={3,5},此时A∩B与A∩C=,同时成立,∴满足条件的实数a=–2.
例4设集合A={x2,2x–1,–4},B={x–5,1–x,9},若A∩B={9},求A∪B.
【解析】由9∈A,可得x2=9或2x–1=9,解得x=±3或x=5.
当x=3时,A={9,5,–4},B={–2,–2,9},B中元素违背了互异性,舍去.
当x=–3时,A={9,–7,–4},B={–8,4,9},A∩B={9}满足题意,故A∪B={–7,–4,–8,4,9}.
当x=5时,A={25,9,–4},B={0,–4,9},此时A∩B={–4,9}与A∩B={9}矛盾,故舍去.
综上所述,x=–3且A∪B={–8,–4,4,–7,9}.
高一数学教案大全2021模板2
教材分析
圆是学生在初中已初步了解了圆的知识及前面学习了直线方程的基础上来进一步学习《圆的标准方程》,它既是前面圆的知识的复习延伸,又是后继学习圆与直线的位置关系奠定了基础。因此,本节课在本章中起着承上启下的重要作用。
教学目标
1. 知识与技能:探索并掌握圆的标准方程,能根据方程写出圆的坐标和圆的半径。
2. 过程与方法:通过圆的标准方程的学习,掌握求曲线方程的方法,领会数形结合的思想。
3. 情感态度与价值观:激发学生学习数学的兴趣,感受学习成功的喜悦。
教学重点难点
以及措施
教学重点:圆的标准方程理解及运用
教学难点:根据不同条件,利用待定系数求圆的标准方程。
根据教学内容的特点及高一年级学生的年龄、认知特征,紧紧抓住课堂知识的结构关系,遵循“直观认知――操作体会――感悟知识特征――应用知识”的认知过程,设计出包括:观察、操作、思考、交流等内容的教学流程。并且充分利用现代化信息技术的教学手段提高教学效率。以此使学生获取知识,给学生独立操作、合作交流的机会。学法上注重让学生参与方程的推导过程,努力拓展学生思维的空间,促其在尝试中发现,讨论中明理,合作中成功,让学生真正体验知识的形成过程。
学习者分析
高一年级的学生从知识层面上已经掌握了圆的相关性质;从能力层面具备了一定的观察、分析和数据处理能力,对数学问题有自己个人的看法;从情感层面上学生思维活跃积极性高,但他们数学应用意识和语言表达的能力还有待加强。
教法设计
问题情境引入法 启发式教学法 讲授法
学法指导
自主学习法 讨论交流法 练习巩固法
教学准备
ppt课件 导学案
教学环节
教学内容
教师活动
学生活动
设计意图
情景引入
回顾复习
(2分钟)
1.观赏生活中有关圆的图片
2.回顾复习圆的定义,并观看圆的生成flash动画。
提问:直线可以用一个方程表示,那么圆可以用一个方程表示吗?
教师创设情景,引领学生感受圆。
教师提出问题。引导学生思考,引出本节主旨。
学生观赏圆的图片和动画,思考如何表示圆的方程。
生活中的图片展示,调动学生学习的积极性,让学生体会到园在日常生活中的广泛应用
自主学习
(5分钟)
1.介绍动点轨迹方程的求解步骤:
(1)建系:在图形中建立适当的坐标系;
(2)设点:用有序实数对(x,y)表示曲 线上任意一点M的坐标;
(3)列式:用坐标表示条件P(M)的方程 ;
(4)化简:对P(M)方程化简到最简形式;
2.学生自主学习圆的方程推导,并完成相应学案内容,
教师介绍求轨迹方程的步骤后,引导学生自学圆的标准方程
自主学习课本中圆的标准方程的推导过程,并完成导学案的内容,并当堂展示。
培养学生自主学习,获取知识的能力
合作探究(10分钟)
1.根据圆的标准方程说明确定圆的方程的条件有哪些?
2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的关系的判断方法:
(1)点在圆上
(2)点在圆外
(3)点在圆内
教师引导学生分组探讨,从旁巡视指导学生在自学和探讨中遇到的问题,并鼓励学生以小组为单位展示探究成果。
学生展开合作性的探讨,并陈述自己的研究成果。
通过合作探究和自我的展示,鼓励学生合作学习的品质
当堂训练(18分钟)
1.求下列圆的圆心坐标和半径
C1: x2+y2=5
C2: (x-3)2+y2=4
C3: x2+(y+1)2=a2(a≠0)
2. 以C(4,-6)为圆心,半径等于3的圆的标准方程
3. 设圆(x-a)2+(y-b)2=r2
则坐标原点的位置是( )
A.在圆外 B.在圆上
C.在圆内 D.与a的取值有关
4.写出下列各圆的标准方程(1)圆心在原点,半径等于5
(2)经过点P(5,1),圆心在点C(6,-2);
(3)以A(2,5),B(0,-1)为直径的圆.
5.下列方程分别表示什么图形
(1) x2+y2=0
(2) (x-1)2 =8-(y+2)2
(3) 《圆的标准方程》教学设计-贾伟
6.巩固提升:已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在直线l:x-y+1=0上,求圆C的标准方程并作图
指导学生就不同条件下给出的圆心和半径关系,求解圆的标准方程这两个要素展开训练。
学生自主开展训练,并纠正学习中所遇到的问题
巩固所学知识,并查缺补漏。
回顾小结
(1分钟)
1.你学到了哪些知识?
2.你掌握了哪些技能?
3.你体会到了哪些数学思想?
采用提问的形式帮助学生回顾和分析本节所学。
学生思考并从知识、技能和思想方法上回顾总结。
培养学生归纳总结能力
作业布置
(1分钟)
课本87页习题2-2
A组的第1道题
布置训练任务
标记并完成相应的任务
检测学生掌握知识情况。
教学反思
本节教学主要遵循“回-导-学-展-讲-练-结”的高效课堂教学模式,遵循学生学习的主体地位,鼓励学生自主思考和探讨。
教学中要积极鼓励学生多思考总结,在判断点与圆的位置关系中,要遵从学生个性化的发展思路,鼓励学生创造性的解决问题。
高一数学教案大全2021模板3
案例背景:
对数函数是函数中又一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.
案例叙述:
(一).创设情境
(师):前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.
反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.
(提问):什么是指数函数?指数函数存在反函数吗?
(学生):是指数函数,它是存在反函数的.
(师):求反函数的步骤
(由一个学生口答求反函数的过程):
由得.又的值域为,
所求反函数为.
(师):那么我们今天就是研究指数函数的反函数-----对数函数.
(二)新课
1.(板书)定义:函数的反函数叫做对数函数.
(师):由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?
(教师提示学生从反函数的三定与三反去认识,学生自主探究,合作交流)
(学生)对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故有着相同的限制条件.
(在此基础上,我们将一起来研究对数函数的图像与性质.)
2.研究对数函数的图像与性质
(提问)用什么方法来画函数图像?
(学生1)利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.
(学生2)用列表描点法也是可以的。
请学生从中上述方法中选出一种,大家最终确定用图像变换法画图.
(师)由于指数函数的图像按和分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况和,并分别以和为例画图.
具体操作时,要求学生做到:
(1)指数函数和的图像要尽量准确(关键点的位置,图像的变化趋势等).
(2)画出直线.
(3)的图像在翻折时先将特殊点对称点找到,变化趋势由靠近轴对称为逐渐靠近轴,而的图像在翻折时可提示学生分两段翻折,在左侧的先翻,然后再翻在右侧的部分.
学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出
和的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:
教师画完图后再利用电脑将和的图像画在同一坐标系内,如图:
然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)
3.性质
(1)定义域:
(2)值域:
由以上两条可说明图像位于轴的右侧.
(3)图像恒过(1,0)
(4)奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于轴对称.
(5)单调性:与有关.当时,在上是增函数.即图像是上升的
当时,在上是减函数,即图像是下降的.
之后可以追问学生有没有值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:
当时,有;当时,有.
学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.
最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)
对图像和性质有了一定的了解后,一起来看看它们的应用.
(三).简单应用
1.研究相关函数的性质
例1.求下列函数的定义域:
(1)(2)(3)
先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.
2.利用单调性比较大小
例2.比较下列各组数的大小
(1)与;(2)与;
(3)与;(4)与.
让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.
三.拓展练习
练习:若,求的取值范围.
四.小结及作业
案例反思:
本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,因而在教学上采取教师逐步引导,学生自主合作的方式,从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.
在教学中一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地以反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.
高一数学教案大全2021模板4
一、教学目标:
1.知识与技能:理解并掌握等比数列的性质并且能够初步应用。
2.过程与方法:通过观察、类比、猜测等推理方法,提高我们分析、综合、抽象、
概括等逻辑思维能力。
3.情感态度价值观:体会类比在研究新事物中的作用,了解知识间存在的共同规律。
二、重点:等比数列的性质及其应用。
难点:等比数列的性质应用。
三、教学过程。
同学们,我们已经学习了等差数列,又学习了等比数列的基础知识,今天我们继续学习等比数列的性质及应用。我给大家发了导学稿,让大家做了预习,现在找同学对照下面的表格说说等差数列和等比数列的差别。
数列名称 等差数列 等比数列
定义 一个数列,若从第二项起 每一项减去前一项之差都是同一个常数,则这个数列是等差数列。 一个数列,若从第二项起 每一项与前一项之比都是同一个非零常数,则这个数列是等比数列。
定义表达式 an-an-1=d (n≥2)
(q≠0)
通项公式证明过程及方法
an-an-1=d; an-1-an-2=d,
…a2-a1=d
an-an-1+ an-1-an-2+…+a2-a1=(n-1)d
an=a1+(n-1)-d
累加法 ; …….
an=a1q n-1
累乘法
通项公式 an=a1+(n-1)-d an=a1q n-1
多媒体投影(总结规律)
数列名称 等差数列 等比数列
定 义 等比数列用“比”代替了等差数列中的“差”
定 义
表
达 式 an-an-1=d (n≥2)
通项公式证明
迭加法 迭乘法
通 项 公 式
加-乘
乘—乘方
通过观察,同学们发现:
? 等差数列中的 减法、加法、乘法,
等比数列中升级为 除法、乘法、乘方.
四、探究活动。
探究活动1:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习1;等差数列的性质1;猜想等比数列的性质1;性质证明。
练习1 在等差数列{an}中,a2= -2,d=2,求a4=_____..(用一个公式计算) 解:a4= a2+(n-2)d=-2+(4-2)-2=2
等差数列的性质1: 在等差数列{an}中, a n=am+(n-m)d.
猜想等比数列的性质1 若{an}是公比为q的等比数列,则an=am-qn-m
性质证明 右边= am-qn-m= a1qm-1qn-m= a1qn-1=an=左边
应用 在等比数列{an}中,a2= -2 ,q=2,求a4=_____. 解:a4= a2q4-2=-2-22=-8
探究活动2:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习2;等差数列的性质2;猜想等比数列的性质2;性质证明。
练习2 在等差数列{an}中,a3+a4+a5+a6+a7=450,则a2+a8的值为 . 解:a3+a4+a5+a6+a7=(a3+ a7)+(a4+ a6)+ a5= 2a5+2a5+a5=5 a5=450 a5=90 a2+a8=2×90=180
等差数列的性质2: 在等差数列{an}中, 若m+n=p+q,则am+an=ap+aq 特别的,当m=n时,2 an=ap+aq
猜想等比数列的性质2 在等比数列{an} 中,若m+n=s+t则am-an=as-at 特别的,当m=n时,an2=ap-aq
性质证明 右边=am-an= a1qm-1 a1qn-1= a12qm+n-1= a12qs+t-1=a1qs-1 a1qt-1= as-at=左边 证明的方向:一般来说,由繁到简
应用 在等比数列{an}若an>0,a2a4+2a3a5+a4a6=36,则a3+a5=_____. 解:a2a4+2a3a5+a4a6= a32+2a3a5+a52=(a3+a5)2=36
由于an>0,a3+a5>0,a3+a5=6
探究活动3:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习3;等差数列的性质3;猜想等比数列的性质3;性质证明。
练习3 在等差数列{an}中,a30=10,a45=90,a60=_____. 解:a60=2- a45- a30=2×90-10=170
等差数列的性质3: 若an-k,an,an+k是等差数列{an}中的三项, 则这些项构成新的等差数列,且2an=an-k+an+k
an即时an-k,an,an+k的等差中项
猜想等比数列的性质3 若an-k,an,an+k是等比数列{an}中的三项,则这些项构成新的等比数列,且an2=an-k-an+k
an即时an-k,an,an+k的等比中项
性质证明 右边=an-k-an+k= a1qn-k-1 a1qn+k-1= a12qn-k-1+n+k-1= a12q2n-2=(a1qn-1) 2t=an2左边 证明的方向:由繁到简
应用 在等比数列 {an}中a30=10,a45=90,a60=_____.
解:a60= = =810
应用 等比数列{an}中,a15=10, a45=90,a60=________. 解:
a30= = = 30
A60=
探究活动4:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习4;等差数列的性质4;猜想等比数列的性质4;性质证明。
练习4 设数列{an} 、{ bn} 都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=_____. 解:a5+b5=2(a3+b3)-(a1+b1)=2-21-7=35
等差数列的性质4: 设数列{an} 、{ bn} 是公差分别为d1、d2的等差数列,则数列{an+bn}是公差d1+d2的等差数列 两个项数相同的等差数列的和任然是等差数列
猜想等比数列的性质4 设数列{an} 、{ bn} 是公比分别为q1、q2的等比数列,则数列{an-bn}是公比为q1q2的等比数列 两个项数相同的等比数列的和比一定是等比数列,两个项数相同的等比数列的积任然是等比数列。
性质证明 证明:设数列{an}的首项是a1,公比为q1; {bn}的首项为b1,公比为q2,设cn=an?bn那么数列{an?bn} 的第n项与第n+1项分别为:
应用 设数列{an} 、{ bn} 都是等比数列,若a1b1=7,a3b3=21,则a5b5=_____. 解:由题意可知{an?bn}是等比数列,a3b3是a1b1;a5b5的等比中项。
由(a3b3)2= a1b1- a5b5 212= 7- a5b5 a5b5=63
(四个探究活动的设计充分尊重学生的主体地位,以学生的自主学习,自主探究为主题,以教师的指导为辅,开展教学活动)
五、等比数列具有的单调性
(1)q<0,等比数列为 摆动 数列, 不具有 单调性
(2)q>0(举例探讨并填表)
a1 a1>0 a1<0
q的范围 0 q=1 q>1 0 q=1 q>1
{an}的单调性 单调递减 不具有单调性 单调递增 单调递增 不具有单调性 单调递减
让学生举例说明,并查验有多少学生填对。(真确评价)
六、课堂练习:
1、已知各项均为正数的等比数列{an}中,a1a2a3=5,a7a8a9=10,则a4a5a6等于( ).
A. B.?7 C.?6 D.?
解析:由已知得a32?=5,? a82=10,
∴a4a5a6=a53?= = =5 ?.
答案:A
2、已知数列1,a1,a2,4是等比数列,则a1a2= .
答案:4
3、 +1与 -1两数的等比中项是( ).
A.1 B.?-1 C.? D.±1?
解析:根据等比中项的定义式去求。答案:选D
4、已知等比数列{an}的公比为正数,且a3a9=2 ? ,a2=1,则a1等于( ).
A.2 B.? C.? D.?
解析:∵a3a9= =2 ?,∴? =q2=2,∵q>0,∴q= ?.故a1= ?= ?= ?.
答案:C
5练习题:三个数成等比数列,它们的和等于14,
它们的积等于64,求这三个数。
分析:若三个数成等差数列,则设这三个数为a-d,a,a+d.
由类比思想的应用可得,若三个数成等比数列,则设这三个数
为: 根据题意
再由方程组可得:q=2 或
既这三个数为2,4,8或8,4,2。
七、小结
本节课通过观察、类比、猜测等推理方法,研究等比数列的性质及其应用,从而培养和提高我们综合运用分析、综合、抽象、概括,逻辑思维解决问题的能力。
八、
§3.1.2等比数列的性质及应用
性质一:若{an}是公比为q的等比数列,则an=am-qn-m
性质二:在等比数列{an} 中,若m+n=s+t则am-an=as-at
性质三:若an-k,an,an+k是等比数列{an}中的三项,则这些
项构成新的等比数列,且 an2=an-k-an+k
性质四:设数列{an} 、{ bn} 是公比分别为q1、q2的等比
数列,则数列{an-bn}是公比为q1q2的等比数列
板书设计
九、反思
高一数学教案大全2021模板5
一、目的要求
1.通过本章的引言,使学生初步了解本章所研究的问题是集合与简易逻辑的有关知识,并认识到用数学解决实际问题离不开集合与逻辑的知识。
2.在小学与初中的基础上,结合实例,初步理解集合的概念,并知道常用数集及其记法。
3.从集合及其元素的概念出发,初步了解属于关系的意义。
二、内容分析
1.集合是中学数学的一个重要的基本概念。在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础。
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。例如,下一章讲函数的概念与性质,就离不开集合与逻辑。
2.1.1节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。
3.这节课主要学习全章的引言和集合的基本概念。学习引言是引发学生的学习兴趣,使学生认识学习本章的意义。本节课的教学重点是集合的基本概念。
4.在初中几何中,点、直线、平面等概念都是原始的、不定义的概念,类似地,集合则是集合论中的原始的、不定义的概念。在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识。教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集。”这句话,只是对集合概念的描述性说明。
三、教学过程
提出问题:
教科书引言所给的问题。
组织讨论:
为什么“回答有20名同学参赛”不一定对,怎么解决这个问题。
归纳总结:
1.可能有的同学两次运动会都参加了,因此,不能简单地用加法解决这个问题.
2.怎么解决这个问题呢?以前我们解一个问题,通常是先用代数式表示问题中的数量关系,再进一步求解,也就是先用数学语言描述它,把它数学化。这个问题与我们过去学过的问题不同,是属于与集合有关的问题,因此需要先用集合的语言描述它,完全解决问题,还需要更多的集合与逻辑的知识,这就是本章将要学习的内容了。
提出问题:
1.在初中,我们学过哪些集合?
2.在初中,我们用集合描述过什么?
组织讨论:
什么是集合?
归纳总结:
1.代数:实数集合,不等式的解集等;
几何:点的集合等。
2.在初中几何中,圆的概念是用集合描述的。
新课讲解:
1.集合的概念:(具体举例后,进行描述性定义)
(1)某种指定的对象集在一起就成为一个集合,简称集。
(2)元素:集合中的每个对象叫做这个集合的元素。
(3)集合中的元素与集合的关系:
a是集合A的元素,称a属于集合A,记作a∈A;
a不是集合A的元素,称a不属于集合A,记作。
例如,设B={1,2,3,4,5},那么5∈B,
注:集合、元素概念是数学中的原始概念,可以结合实例理解它们所描述的整体与个体的关系,同时,应着重从以下三个元素的属性,来把握集合及其元素的确切含义。
①确定性:集合中的元素是确定的,即给定一个集合,任何一个对象是不是这个集合的元素也就确定了。
例如,像“我国的小河流”、“年轻人”、“接近零的数”等都不能组成一个集合。
②互异性:集合中的元素是互异的,即集合中的元素是没有重复的。
此外,集合还有无序性,即集合中的元素无顺序。
例如,集合{1,2},与集合{2,1}表示同一集合。
2.常用的数集及其记法:
全体非负整数的集合通常简称非负整数集(或自然数集),记作N,非负整数集内排除0的集,表示成或;
全体整数的集合通常简称整数集,记作Z;
全体有理数的集合通常简称有理数集,记作Q;
全体实数的集合通常简称实数集,记作R。
注:①自然数集与非负整数集是相同的,就是说,自然数集包括数0,这与小学和初中学习的可能有所不同;
②非负整数集内排除0的集,也就是正整数集,表示成或。其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成或。负整数集、正有理数集、正实数集等,没有专门的记法。
课堂练习:
教科书1.1节第一个练习第1题。
归纳总结:
1.集合及其元素是数学中的原始概念,只能作描述性定义。学习时应结合实例弄清其含义。
2.集合中元素的特性中,确定性可以用于判定某些对象是否是给定集合的元素,互异性可用于简化集合的表示,无序性可以用于判定集合间的关系(如后面要学习的包含或相等关系等)。
四、布置作业
教科书1.1节第一个练习第2题(直接填在教科书上)。
相关文章
最新高一数学教案必修三文案2023-06-14 11:37:07
最新高一数学教案必修四人教版模板2023-06-07 15:20:51
高一数学教案模板集合的运算文案2023-06-16 09:14:53
高一数学教案北师版文案2023-06-11 03:12:54
五学级上册数学教学工作总结2023-06-09 01:18:54
小学数学备课组教学总结报告2023-06-08 17:38:35
上海对外经贸大学和北京交通大学(威海校区)对比哪个好(排名分数线区2024-03-31 16:25:18
河北高考排名237950名物理能上什么大学(能报哪些学校)2024-03-31 16:19:23
山东城市建设职业学院在山东招生人数和招生计划 多少人2024-03-31 16:15:16
上海农林职业技术学院在湖南招生人数和招生计划 多少人2024-03-31 16:12:52
吉林农业科技学院在湖南招生人数和招生计划 多少人2024-03-31 16:09:19
安徽高考多少分可以上云南经贸外事职业学院 招生人数和最低分2024-03-31 16:04:52
小学数学上册二年级教案最新例文2023-06-09 21:16:26
新版北师大版二年级下册数学教案最新模板2023-06-04 01:07:32
最新一年级数学跷跷板教案模板2023-06-06 16:30:46