初二下册数学公式归纳
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1乘2+2乘3+3乘4+4乘5+5乘6+6乘7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c乘h 斜棱柱侧面积 S=c'乘h
正棱锥侧面积 S=1/2c乘h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi乘r2
圆柱侧面积 S=c乘h=2pi乘h 圆锥侧面积 S=1/2乘c乘l=pi乘r乘l
弧长公式 l=a乘r a是圆心角的弧度数r >0 扇形面积公式 s=1/2乘l乘r
锥体体积公式 V=1/3乘S乘H 圆锥体体积公式 V=1/3乘pi乘r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s乘h 圆柱体 V=pi乘r2h
初二年级数学用公式法进行因式分解同步练习
一、回顾 与 思考
1、因式分解的方法有 种,分别是
2、提取公因式法 ma+mb+mc=
3、平方差公式法 a2-b2=
4、能用平方差公式进行因式分解的多项式有什么特点?
5、分解因式一直到不能分解为止.所以分解后一定检查括号内是否能继续分解. 分解因式
二、新知:
1、下面的多项式能用平方差公式分解因式吗?能分解吗?如何分解?
(1) a2+2ab+b2 (2) a2-2ab+b2
三、探究:
完全平方公式:
公式应用的特征:左边 :
结果:
四、练一练
1:下列各多项式哪些能用完全平方式因式分解?若是,请找出相应的a和b.
五、例1:把下列各式因式分解
例2:分解因式 (2)
六、练一练
1、分解因式
七、灵活运用
1、已知 ,那么 =_______。
2、 是一个完全平方式,则 =_______。
3、分解因式 =____________________。
初二数学一元二次方程专题复习题
方程ax2+bx+c=0(a≠0)称为一元二次方程.
一元二次方程的基本解法有开平方法、配方法、公式法和国式分解法.
对于方程ax2+bx+c=0(a≠0),△=b2-4ac称为该方程的根的判别式.当△>0时,方程有两个不相等的实数根,即
当△=0时,方程有两个相等的实数根,即
当△<0时,方程无实数根.
分析 可以使用公式法直接求解,下面介绍的是采用因式分解法求解.
因为
所以
例2 解关于x的方程:
x2-(p2+q2)x+pq(p+q)(p-q)=0.
解 用十字相乘法分解因式得
[x-p(p-q)][x-q(p+q)]=0,
所以x1=p(p-q),x2=q(p+q).
例3 已知方程(2000x)2-2001×1999x-1=0的较大根为a,方程x2+1998x-1999=0的较小根为β,求α-β的值.
解 由方程(2000x)2-2001×1999x-1=0得
(20002x+1)(x-1)=0,
(x+1999)(x-1)=0,
故x1=-1999,x2=1,所以β=-1999.所以
α-β=1-(-1999)=2000.
例4 解方程:(3x-1)(x-1)=(4x+1)(x-1).
分析 本题容易犯的错误是约去方程两边的(x-1),将方程变为
3x-1=4x+1,
所以x=-2,这样就丢掉了x=1这个根.故特别要注意:用含有未知数的整式去除方程两边时,很可能导致方程失根.本题正确的解法如下.
解 (3x-1)(x-1)-(4x+1)(x-1)=0,
(x-1)[(3x-1)-(4x+1)]=0,
(x-1)(x+2)=0,
所以 x1=1,x2=-2.
例5 解方程:x2-3|x|-4=0.
分析 本题含有绝对值符号,因此求解方程时,要考虑到绝对值的意义.
解法1 显然x≠0.当x>0时,x2-3x-4=0,所以x1=4,x2=-1(舍去).当x<0时,x2+3x-4=0,所以x3=-4,x4=1(舍去).
所以原方程的根为x1=4,x2=-4.
解法2 由于x2=|x|2,所以
|x|2-3|x|-4=0,
所以 (|x|-4)(|x|+1)=0,
所以 |x|=4,|x|=-1(舍去).
所以 x1=4,x2=-4.
例6 已知二次方程
3x2-(2a-5)x-3a-1=0
有一个根为2,求另一个根,并确定a的值.
解 由方程根的定义知,当x=2时方程成立,所以
3×22-(2a-5)×2-3a-1=0,
故a=3.原方程为
3x2-x-10=0,即(x-2)(3x+5)=0,
例7 解关于x的方程:ax2+c=0(a≠0).
分析 含有字母系数的方程,一般需要对字母的取值范围进行讨论.
当c=0时,x1=x2=0;
当ac>0(即a,c同号时),方程无实数根.
例8 解关于x的方程:
(m-1)x2+(2m-1)x+m-3=0.
分析 讨论m,由于二次项系数含有m,所以首先要分m-1=0与m-1≠0两种情况(不能认为方程一定是一元二次方程);当m-1≠0时,再分△>0,△=0,△<0三种情况讨论.
解 分类讨论.
(1)当m=1时,原方程变为一元一次方程
x-2=0,
所以x=2.
(2)当m≠1时,原方程为一元二次方程.
△=(2m-1)2-4(m-1)(m-3)=12m-11.
相关文章
高中数学必修5公式必看2023-06-13 17:34:56
初中竞赛重要数学公式归纳总结2023-06-02 04:20:48
高考必考重要数学公式归纳2023-06-18 20:08:51
高考数学复习重点公式总结2023-06-11 21:45:08
初三数学公式总结归纳整理2023-06-03 15:22:01
高考学生必背数学公式总结2023-06-03 03:22:11
上海对外经贸大学和北京交通大学(威海校区)对比哪个好(排名分数线区2024-03-31 16:25:18
河北高考排名237950名物理能上什么大学(能报哪些学校)2024-03-31 16:19:23
山东城市建设职业学院在山东招生人数和招生计划 多少人2024-03-31 16:15:16
上海农林职业技术学院在湖南招生人数和招生计划 多少人2024-03-31 16:12:52
吉林农业科技学院在湖南招生人数和招生计划 多少人2024-03-31 16:09:19
安徽高考多少分可以上云南经贸外事职业学院 招生人数和最低分2024-03-31 16:04:52
小学数学上册二年级教案最新例文2023-06-09 21:16:26
新版北师大版二年级下册数学教案最新模板2023-06-04 01:07:32
最新一年级数学跷跷板教案模板2023-06-06 16:30:46