北考网

苏教版高中常考数学公式归纳大全

时间:2023-06-18 20:42:17 文/阿林 数学北考网www.beiweimall.com

高中数学诱导公式

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα (k∈Z)

cos(2kπ+α)=cosα (k∈Z)

tan(2kπ+α)=tanα (k∈Z)

cot(2kπ+α)=cotα (k∈Z)

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的.三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

注意:在做题时,将a看成锐角来做会比较好做。

三角形的面积公式

已知三角形底a,高h,则S=ah/2

已知三角形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)

和:(a+b+c)_(a+b-c)_1/4

已知三角形两边a,b,这两边夹角C,则S=absinC/2

设三角形三边分别为a、b、c,内切圆半径为r

则三角形面积=(a+b+c)r/2

设三角形三边分别为a、b、c,外接圆半径为r

则三角形面积=abc/4r

已知三角形三边a、b、c,则S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)

| a b 1 |

S△=1/2 _ | c d 1 |

| e f 1 |

【| a b 1 |

| c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC

| e f 1 |

选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小

立体几何公式

名称符号面积S体积V

正方体a——边长S=6a^2V=a^3

长方体a——长S=2(ab+ac+bc)V=abc

b——宽

c——高

棱柱S——底面积V=Sh

h——高

棱锥S——底面积V=Sh/3

h——高

棱台S1和S2——上、下底面积V=h〔S1+S2+√(S1^2)/2〕/3

h——高

拟柱体S1——上底面积V=h(S1+S2+4S0)/6

S2——下底面积

S0——中截面积

h——高

圆柱r——底半径C=2πrV=S底h=∏rh

h——高

C——底面周长

S底——底面积S底=πR^2

S侧——侧面积S侧=Ch

S表——表面积S表=Ch+2S底

S底=πr^2

空心圆柱R——外圆半径

r——内圆半径

h——高V=πh(R^2-r^2)

直圆锥r——底半径

h——高V=πr^2h/3

圆台r——上底半径

R——下底半径

h——高V=πh(R^2+Rr+r^2)/3

球r——半径

d——直径V=4/3πr^3=πd^2/6

球缺h——球缺高

r——球半径

a——球缺底半径a^2=h(2r-h)V=πh(3a^2+h^2)/6=πh2(3r-h)/3

球台r1和r2——球台上、下底半径

h——高V=πh[3(r12+r22)+h2]/6

圆环体R——环体半径

D——环体直径

r——环体截面半径

d——环体截面直径V=2π^2Rr^2=π^2Dd^2/4

桶状体D——桶腹直径

d——桶底直径

h——桶高V=πh(2D^2+d2^)/12(母线是圆弧形,圆心是桶的中心)

V=πh(2D^2+Dd+3d^2/4)/15(母线是抛物线形)

相关文章

高二重要数学公式归纳总结2023-06-07 07:59:55

高中数学重要公式总结归纳大全常用2023-06-10 02:32:23

学前班数学老师的规范经验教学反思五篇2023-06-03 23:09:36

中学数学教学工作总结范文7篇2023-06-12 16:02:42

数学个人教学工作总结反思7篇2023-06-16 00:13:40

二年级数学上册教案例文2023-06-06 06:06:00

上海对外经贸大学和北京交通大学(威海校区)对比哪个好(排名分数线区2024-03-31 16:25:18

河北高考排名237950名物理能上什么大学(能报哪些学校)2024-03-31 16:19:23

山东城市建设职业学院在山东招生人数和招生计划 多少人2024-03-31 16:15:16

上海农林职业技术学院在湖南招生人数和招生计划 多少人2024-03-31 16:12:52

吉林农业科技学院在湖南招生人数和招生计划 多少人2024-03-31 16:09:19

安徽高考多少分可以上云南经贸外事职业学院 招生人数和最低分2024-03-31 16:04:52

小学数学上册二年级教案最新例文2023-06-09 21:16:26

新版北师大版二年级下册数学教案最新模板2023-06-04 01:07:32

最新一年级数学跷跷板教案模板2023-06-06 16:30:46