数学万能解题思路技巧
第一步 代数化
不管是代数题目还是几何题目,将未知量用代数式表示。比如应用题中未知数,几何题中的未知边长等。
第二步 寻找相等变化,建立方程关系
利用我们学得的各种等量变化,建立方程。比如完全平方公式、前面说的几何中的相等变化,把相等关系找到后,用我们第一步得到的代数式,建立方程求解。
绝大部分的几何问题以及部分代数问题可以通过这个思路求解、求证。
这个思路简单来说就是几何问题代数化,代数问题方程化。同学们在做题的过程中多多体会,这个解题思路是一个宏观的指导思想,将很大方面有助于我们快速找到解题的正确方法。
初中数学解题方法与技巧
( 1 )直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题 .
( 2 )换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题 . ?
( 3 )数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径 . ?
( 4 )等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的 . ?
( 5 )特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题 .
( 6 )构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题 .
( 7 )坐标法:以坐标系为工具,用计算方法解决几何问题也是转化方法的一个重要途径
初中数学解题技巧
1. 弄清题意
此为“文字型”数学证明题,既没有图形,也无直观的已知与求证。
如何弄清题意呢?根据命题的定义可知,命题由条件与结论两部分组成,因此区分命题的条件与结论至关重要,是解题成败的关键。
命题可以改写成“如果………..,那么……….”的形式,其中“如果………..”就是命题的条件,“那么…….”就是命题的结论,据此对题目进行改写:如果在等腰三角形中分别作两底角的平分线,那么这两条平分线长度相等。
于是题目的意思就很清晰了,就是在等腰三角形中作两底角平分线,然后根据已知的条件去求证这两条平分线相等。
这样题目要求我们做什么就一目了然了!
2. 根据题意,画出图形。
图形对解决证明题,能起到直观形象的提示,所以画图因尽量与题意相符合。
并且把题中已知的条件,能标在图形上的尽量标在图形上。
3. 根据题意与图形,用数学的语言与符号写出已知和求证。
众所周知,命题的条件---已知,命题的结论---求证,但要特别注意的是,已知、求证必须用数学的语言和符号来表示。
已知:如图(1),在△ABC中,AB=AC, BD、CE分别是△ABC的角平分线。
求证:BD=CE
4. 分析已知、求证与图形,探索证明的思路。
对于证明题,有三种思考方式:
(1)正向思维。
对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。
(2)逆向思维。
顾名思义,就是从相反的方向思考问题。
运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。
这种方法是推荐学生一定要掌握的。
在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。
如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。
同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。
例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。
这是非常好用的方法,同学们一定要试一试。
(3)正逆结合。
对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。
给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。
正逆结合,战无不胜。
分析:此题要想证明 BD=CE ,就要引导学生观察图形(图形(1)),弄清题意。
发现BD、CE分别存在于两对三角形中:△ABD与△ACE,△BEC与△CDB,只要能证明其中任何一对三角形全等,即可利用全等三角形性质得到对应边相等。
(此思维属于逆向思维)
5. 根据证明的思路,用数学的语言与符号写出证明的过程
证明过程的书写,其实就是把证明的思路从脑袋中搬到纸张上。
这个过程,对数学符号与数学语言的应用要求较高,在讲解时,要提醒学生任何的“因为、所以”,在书写是都要符合公理、定理、推论或以已知条件相吻合,不能无中生有、胡说八道,要有根有据!
证明:
∵AB=AC(已知)
∴∠ABC=∠ACB(等边对等角)
∵BD、CE分别是△ABC的角平分线(已知)
∴∠1=∠ABC, ∠2=∠ACB(角平分线的定义)
∴∠1=∠2(等量代换)
在△BEC与△CDB中,
∵∠ACB=∠ABC, BC=CB, ∠1=∠2
∴△BEC≌△CDB(ASA)
∴BD=CE(全等三角形的对应边相等)
6. 检查证明的过程,看看是否合理、正确
任何正确的步骤,都有相应的合理性和与之相应证的公理、定理、推论,证明过程书写完毕后,对证明过程的每一步进行检查,是非常重要的,是防止证明过程出现遗漏的关键。
最后,同学们在平时练习中要敢于尝试,多分析,多总结。
相关文章
高考文科数学知识点整理2023-06-18 00:40:50
英语考试听力解题技巧方法总结2023-06-14 19:33:42
高考数学文科知识点整理2023-06-14 18:48:35
湖南文科数学高考知识点整理2023-06-18 02:08:43
高考文科数学一轮教案范文2023-06-12 08:53:50
小学数学解题技巧必看2023-06-16 06:02:24
上海对外经贸大学和北京交通大学(威海校区)对比哪个好(排名分数线区2024-03-31 16:25:18
河北高考排名237950名物理能上什么大学(能报哪些学校)2024-03-31 16:19:23
山东城市建设职业学院在山东招生人数和招生计划 多少人2024-03-31 16:15:16
上海农林职业技术学院在湖南招生人数和招生计划 多少人2024-03-31 16:12:52
吉林农业科技学院在湖南招生人数和招生计划 多少人2024-03-31 16:09:19
安徽高考多少分可以上云南经贸外事职业学院 招生人数和最低分2024-03-31 16:04:52
小学数学上册二年级教案最新例文2023-06-09 21:16:26
新版北师大版二年级下册数学教案最新模板2023-06-04 01:07:32
最新一年级数学跷跷板教案模板2023-06-06 16:30:46