分数乘法知识点
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
(二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b <1时,c<a(b≠0)。< p="">
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算
1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)
2、判断两个数是否互为倒数的标准是:两数相乘的积是否为“1”。例如:a×b=1则a、b互为倒数。
3、求倒数的方法:
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=1
0没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。带分数的倒数小于1。
(六)分数乘法应用题——用分数乘法解决问题
1、求一个数的几分之几是多少?(用乘法)
已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
3、什么是速度?
速度是单位时间内行驶的路程。
速度=路程÷时间 时间=路程÷速度 路程=速度×时间
单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。
4、求甲比乙多(少)几分之几?
多:(甲-乙)÷乙 少:(乙-甲)÷乙
数与代数知识点
一、分数乘法
(一)分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)规律:(乘法中比较大小时)
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)分数混合运算的运算顺序和整数的运算顺序相同。
(四)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=ac+bc ac+bc=(a+b)×c
二、分数乘法的解决问题(详细见重难点分解)
(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)
1、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面
2、求一个数的几倍: 一个数×几倍; 求一个数的几分之几是多少: 一个数× 。
3、写数量关系式技巧:
(1)“的”相当于 “×”(乘号)
“占”、“是”、“比”“相当于”相当于“=”(等号)
(2)分率前是“的”:
单位“1”的量×分率=分率对应量
(3)分率前是“多或少”的意思:
单位“1”的量×(1±分率)=分率的对应量
二、分数除法
(一)倒数
1、倒数的意义: 乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。
2、求倒数的方法:(原数与倒数之间不要写等号哦)
(1)求分数的倒数:交换分子分母的位置。
(2)求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)求带分数的倒数:把带分数化为假分数,再求倒数。
(4)求小数的倒数: 把小数化为分数,再求倒数。
3、因为1×1=1,1的倒数是1;
因为找不到与0相乘得1的数0没有倒数。
4、对于任意数a(a≠0),它的倒数为1/a;非零整数a的倒数为1/a;分数b/a的倒数是a/b;
5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
(二)分数除法
1、分数除法的意义:
分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则: 除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时):
(1)当除数大于1,商小于被除数;
(2)当除数小于1(不等于0),商大于被除数;
(3)、当除数等于1,商等于被除数。
4、“[ ] ”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
(三)分数除法解决问题(详细见重难点分解)
(未知单位“1”的量(用除法): 已知单位“1”的几分之几是多少,求单位“1”的量。 )
1、数量关系式和分数乘法解决问题中的关系式相同:
(1)分率前是“的”:
单位“1”的量×分率=分率对应量
(2)分率前是“多或少”的意思:
单位“1”的量×(1 分率)=分率对应量
2、解法:(建议:用方程解答)
(1)方程:根据数量关系式设未知量为x,用方程解答。
(2)算术(用除法):分率对应量÷对应分率 = 单位“1”的量
3、求一个数是另一个数的几分之几:就用一个数÷另一个数
4、求一个数比另一个数多(少)几分之几:
① 求多几分之几:大数÷小数 – 1
② 求少几分之几: 1 - 小数÷大数
或①求多几分之几(大数-小数)÷小数
② 求少几分之几:(大数-小数)÷大数
(四)比和比的应用
1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值(比值通常用分数表示,也可以用小数或整数表示)。
例如
15 : 10 = 15÷10=1.5
∶ ∶ ∶ ∶
前项 比号 后项 比值
3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。
例: 路程÷速度=时间。
4、区分比和比值
比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、比和除法、分数的联系:
7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
(五)比的基本性质
1、根据比、除法、分数的关系:
商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:
(1)用比的基本性质化简
①用比的前项和后项同时除以它们的公因数。
②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
③两个小数的比:向右移动小数点的位置,先化成整数比再化简。
(2)用求比值的方法。注意: 最后结果要写成比的形式。
5.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。
如: 已知两个量之比为 ,则设这两个量分别为 。
6、路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)
工作总量一定,工作效率和工作时间成反比。
(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)
三、百分数
(一)百分数的意义和写法
1、百分数的意义:表示一个数是另一个数的百分之几。
百分数是指的两个数的比,因此也叫百分率或百分比。
2、百分数和分数的主要联系与区别:
(1)联系:都可以表示两个量的倍比关系。
(2)区别:
①意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;
分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。
②、百分数的分子可以是整数,也可以是小数;
分数的分子不能是小数,只能是除0以外的自然数。
3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示。
(二)百分数与小数的互化:
1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。
2. 百分数化成小数:把小数点向左移动两位,同时去掉百分号。
(三)百分数的和分数的互化
1、百分数化成分数:
先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。
2、分数化成百分数:
① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。
②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
(四)常见的分数与小数、百分数之间的互化
圆的面积知识
1、圆的面积:圆所占平面的大小叫做圆的面积。 用字母S表示。
2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。
3、圆面积公式的推导:
(1)、用逐渐逼近的转化思想: 体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。
(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。
(3)、拼出的图形与圆的周长和半径的关系。
4、环形的面积:
一个环形,外圆的半径是R,内圆的半径是r。(R=r+环的宽度.)
S环 = πR2-πr2或
环形的面积公式: S环=π(R2-r2)。
5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。
而面积扩大或缩小的倍数是这倍数的平方倍。
例如:
在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。
6、两个圆:半径比 = 直径比 = 周长比;而面积比等于这比的平方。
例如:
两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9
7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π
8、当长方形,正方形,圆的周长相等时,圆面积,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。
9、确定起跑线:
(1)、每条跑道的长度 = 两个半圆形跑道合成的圆的周长 + 两个直道的长度。
(2)、每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。(因此起跑线不同)
(3)、每相邻两个跑道相隔的距离是: 2×π×跑道的宽度
(4)、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。
10、常用各π值结果:
2π = 6.28 3π = 9.42
4π = 12.56 5π = 15.7
6π = 18.84 7π = 21.98
8π = 25.12 9π = 28.26
10π = 31.4 16π = 50.24
25π = 78.5 36π = 113.04
64π = 200.96 96π = 301.44
相关文章
初中数学知识点总结北师大版必看2023-06-11 09:56:01
数学教师教学工作计划怎么写五篇2023-06-16 18:34:59
数学五年级的教学总结五篇2023-06-09 06:54:53
高一数学教案集合文案2023-06-09 12:58:23
过小年有什么注意事项介绍2023-06-07 13:17:25
小满节气三候含义是什么2023-06-19 11:36:45
上海对外经贸大学和北京交通大学(威海校区)对比哪个好(排名分数线区2024-03-31 16:25:18
河北高考排名237950名物理能上什么大学(能报哪些学校)2024-03-31 16:19:23
山东城市建设职业学院在山东招生人数和招生计划 多少人2024-03-31 16:15:16
上海农林职业技术学院在湖南招生人数和招生计划 多少人2024-03-31 16:12:52
吉林农业科技学院在湖南招生人数和招生计划 多少人2024-03-31 16:09:19
安徽高考多少分可以上云南经贸外事职业学院 招生人数和最低分2024-03-31 16:04:52
小学数学上册二年级教案最新例文2023-06-09 21:16:26
新版北师大版二年级下册数学教案最新模板2023-06-04 01:07:32
最新一年级数学跷跷板教案模板2023-06-06 16:30:46