北考网

初一数学教案怎么写呢

时间:2023-06-11 06:12:48 文/孙小飞 数学北考网www.beiweimall.com

初一数学教案怎么写呢1

教学目的

通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。

重点、难点

1.重点:探索这些实际问题中的等量关系,由此等量关系列出方程。

2.难点:找出能表示整个题意的等量关系。

教学过程

一、复习

1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数

本利和=本金×利息×年数+本金

2.商品利润等有关知识。

利润=售价-成本 ; =商品利润率

二、新授

问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元?

利息-利息税=48.6

可设小明爸爸前年存了x元,那么二年后共得利息为

2.43%×X×2,利息税为2.43%X×2×20%

根据等量关系,得 2.43%x·2-2.43%x×2×20%=48.6

问,扣除利息的20%,那么实际得到的利息是多少?扣除利息的20%,实际得到利息的80%,因此可得

2.43%x·2·80%=48.6

解方程,得 x=1250

例1.一家商店将某种服装按成本价提高40%后标价,又以8折 (即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元?

大家想一想这15元的利润是怎么来的?

标价的80%(即售价)-成本=15

若设这种服装每件的成本是x元,那么

每件服装的标价为:(1+40%)x

每件服装的实际售价为:(1+40%)x·80%

每件服装的利润为:(1+40%)x·80%-x

由等量关系,列出方程:

(1+40%)x·80%-x=15

解方程,得 x=125

答:每件服装的成本是125元。

三、巩固练习

教科书第15页,练习1、2。

四、小结

当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。

五、作业

教科书第16页,习题6.3.1,第4、5题。

初一数学教案怎么写呢2

教学目的

借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。

重点、难点

1.重点:列一元一次方程解决有关行程问题。

2.难点:间接设未知数。

教学过程

一、复习

1.列一元一次方程解应用题的一般步骤和方法是什么?

2.行程问题中的基本数量关系是什么?

路程=速度×时间 速度=路程 / 时间

二、新授

例1.小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷,在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站,已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?

画“线段图”分析, 若直接设元,设小张家到火车站的路程为x千米。

1.坐公共汽车行了多少路程?乘的士行了多少路程?

2.乘公共汽车用了多少时间,乘出租车用了多少时间?

3.如果都乘公共汽车到火车站要多少时间?

4,等量关系是什么?

如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。

可设公共汽车从小张家到火车站要x小时。

设未知数的方法不同,所列方程的复杂程度一般也不同,因此在设未知数时要有所选择。

三、巩固练习

教科书第17页练习1、2。

四、小结

有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。

四、作业

教科书习题6.3.2,第1至5题。

初一数学教案怎么写呢3

教学目的

1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。

2.理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。

重点、难点

重点:工程中的工作量、工作的效率和工作时间的关系。

难点:把全部工作量看作“1”。

教学过程

一、复习提问

1.一件工作,如果甲单独做2小时完成,那么甲独做I小时完成全

部工作量的多少?

2.一件工作,如果甲单独做。小时完成,那么甲独做1小时,完成

全部工作量的多少?

3.工作量、工作效率、工作时间之间有怎样的关系?

二、新授

阅读教科书第18页中的问题6。

分析:1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么? 已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。

2.怎样用列方程解决这个问题?本题中的等量关系是什么?

[等量关系是:师傅做的工作量+徒弟做的工作量=1)

[先要求出师傅与徒弟各完成的工作量是多少?]

两人的工效已知,因此要先求他们各自所做的天数,因此,设师傅做了x天,则徒弟做(x+1)天,根据等量关系列方程。 解方程得 x=2

师傅完成的工作量为= ,徒弟完成的工作量为=

所以他们两人完成的工作量相同,因此每人各得225元。

三、巩固练习

一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现

由甲独做10小时;

请你提出问题,并加以解答。

例如 (1)剩下的乙独做要几小时完成?

(2)剩下的由甲、乙合作,还需多少小时完成?

(3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?

四、小结

1.本节课主要分析了工作问题中工作量、工作效率和工作时间之

间的关系,即 工作量=工作效率×工作时间

工作效率= 工作时间=

2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。

五、作业

教科书习题6.3.3第1、2题。

初一数学教案怎么写呢4

一、教材分析

分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标 、重点和难点。首先来看一下本节课在教材中的地位和作用。

1、多项式除以单项式在整式的运算中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力,在解决问题的过程中了解数学的价值,发展“用数学”的信心。运算能力的培养主要是在初一阶段完成。多项式除以单项式作为整式的运算的一部分,它是整式运算的重要内容之一,它是整个初中代数的重要部分。

2、就第一章而言, 多项式除以单项式是本章的一个重点。整式的运算这一章,多项式除以单项式是很重要的一块,整式的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在整式范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此乘法的运算是本章的关键,而除法又是学生接触到的较复杂的整式的运算,学生能否接受和形成在整式的运算中转化思考方式及推理的方法等,都在本节中。

从以上两点不难看出它的地位和作用都是很重要的。

接下来,介绍本节课的教学目标 、重点和难点。

新课程标准是我们确定教学目标 ,重点和难点的依据。重点是多项式除以单项式的法则及其应用。多项式除以单项式,其基本方法与步骤是化归为单项式除以单项式,因此多项式除以单项式的运算关键是将它转化为单项式除法的运算,再准确应用相关的运算法则。

难点是理解法则导出的根据。根据除法是乘法的逆运算可知,多项式除以单项式的运算法则的实质是把多项式除以单项式的的运算转化为单项式的除法运算。由于 ,故多项式除以单项式的法则也可以看做是乘法对加法的分配律的应用。

二、教材处理

本节课是在前面学习了单项式除以单项式的基础上进行的,学生已经掌握同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法等知识,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的课件引例,让学生自主参与,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程 的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。

三、教学方法

在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,教学过程 中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程 中在掌握知识同时、发展智力、受到教育。

四、教学过程 的设计。

1、回顾与思考,通过单项式除以单项式法则的复习,完成四道单项式除以单项式的练习题,为本节课探索规律,概括多项式除以单项式的法则做好铺垫。

2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个尝试练习启发学生自主解答,使学生该过程中体会多项式除以单项式规律。由于采用了较灵活的教学手段,学生能够积极的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出多项式除以单项式的法则。

3、例题解析,通过课件生动形象的课件,引导学生尝试完成例题,加深对多项式除以单项式的法则的理解与应用。

4、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由易而难,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用小组合作交流形式,使课堂气氛活跃,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。

5、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。

以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。教学目标 :

1.理解和掌握多项式除以单项式的运算法则。

2.运用多项式除以单项式的法则,熟练、准确地进行计算.

3.通过总结法则,培养学生的抽象概括能力.训练学生的综合解题能力和计算能力.

4.培养学生耐心细致、严谨的数学思维品质.

重点、难点:

(1)多项式除以单项式的法则及其应用.

(2)理解法则导出的根据。

课时安排: 一课时.

教具学具: 多媒体课件.

授课人及时间:关龙 二〇〇七年三月二十九日

教学过程 :

1.复习导入

(l)单项式除以单项式法则是什么?

(2)计算:

1)–12a5b3c÷(–4a2b)=

2)(–5a2b)2÷5a3b2 =

3)4(a+b)7 ÷ (a+b)3 =

4)(–3ab2c)3÷(–3ab2c)2 =

找规律:怎样寻找多项式除以单项式的法则?

尝试练习引入分析

多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

2.例题解析

例3 计算:见课本P49

(1) 尝试练习

(2) 提问:哪个等号是用到了法则?

(3) 在计算多项式除以单项式时,要注意什么?

注意:(l)先定商的符号;

(2)注意把除式(?后的式子)添括号;

要求学生说出式子每步变形的依据.

(3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.

练习设计:

(1)随堂练习P50

(2)联系拓广P51

3.小结

你在本节课学到了什么?

(1)单项式除以单项式的法则

(2)多项式除以单项式的法则

正确地把多项式除以单项式问题转化为单项式除以单项式问题。计算不可丢项,分清“约掉”与“消掉”的区别:“约掉”对乘除法则言,不减项;“消掉”对加减法而言,减项。

4.作业

P50 知识技能

5.综合练习(课件)

初一数学教案怎么写呢5

学习目标:

1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义。

2、会解由两个一元一次不等式组成的一元一次不等式组,能借助数轴正确的表示一元一次不等式组的解集。

3、通过探讨一元一次不等式组的解法以及解集的确定,渗透转化思想,进一步感受数形结合在解决问题中的作用。

4、体验不等式在实际问题中的作用,感受数学的应用价值。

学习重点:一元一次不等式组的解法

学习难点:一元一次不等式组解集的确定。

一、学前准备

【回顾】

1.解不等式 ,并把解集在数轴上表示出来。

【预习】

1、 认真阅读教材34-35页内容

2、____________ _ 叫做一元一次不等式组。

______ _______叫做一元一次不等式组的解集。

叫做解不等式组。

4、求下列两个不等式的解集,并在同一条数轴上表示出来

二、探究活动

【例题分析】

例1. (问题1)题中的“买5筒钱不够,买4筒钱又多”的含义是什么?

例2. (问题2)题中的相等关系是什么?不等关系又是什么?

例3. 解不等式组

【小结】

不等式组解集口诀

“同大取大,同小取小,大小小大中间找,大大小小解不了”

一元一次不等式组解集四种类型如下表:

不等式组(a<b) p="" 记忆口诀

(1)x>ax>b

x>b 同大取大

(2)x<ax<b< p="">

x<a p="" 同小取小

<a p="" 同小取小  (3)x>ax<b< p="">

<a p="" 同小取小  a<x<b p="" 大小取中

<a p="" 同小取小  (4)xb

<a p="" 同小取小

无解 大大小小解不了

【课堂检测】

1、不等式组 的解集是( )

A. B. C. D.无解

2、不等式组 的解集为(  )

A.-1<x<2  p="" d.x≥2<="" c.x<-1 ="" b.-1

3、不等式组 的解集在数轴上表示正确的是( )

A B C D

4、写出下列不等式组的解集:(教材P35练习1)

三、自我测试

1.填空

(1)不等式组x>2x≥-1 的解集是_ __;

(2)不等式组x<-1x<-2 的解集 ;

(3)不等式组x<4x>1 的解集是__ __;

(4)不等式组x>5x<-4 解集是___ ___。

2、解下列不等式组,并在数轴上表示出来

(1)

四、应用与拓展

1、若不等式组 无解,则m的取值范围是 ____ _____.

五、数学日记

相关文章

六年级上册教案数学最新范文2023-06-10 23:59:51

最新北师大数学五年级下册教案例文2023-06-06 01:04:55

最新北师大五年级数学教案范文2023-06-11 14:43:42

北师大一年级数学前后教案例文2023-06-19 22:05:01

展开与折叠北师大版数学初一上册教案2023-06-12 20:05:42

从三个方向看物体的形状北师大版数学初一上册教案2023-06-09 18:49:19

上海对外经贸大学和北京交通大学(威海校区)对比哪个好(排名分数线区2024-03-31 16:25:18

河北高考排名237950名物理能上什么大学(能报哪些学校)2024-03-31 16:19:23

山东城市建设职业学院在山东招生人数和招生计划 多少人2024-03-31 16:15:16

上海农林职业技术学院在湖南招生人数和招生计划 多少人2024-03-31 16:12:52

吉林农业科技学院在湖南招生人数和招生计划 多少人2024-03-31 16:09:19

安徽高考多少分可以上云南经贸外事职业学院 招生人数和最低分2024-03-31 16:04:52

小学数学上册二年级教案最新例文2023-06-09 21:16:26

新版北师大版二年级下册数学教案最新模板2023-06-04 01:07:32

最新一年级数学跷跷板教案模板2023-06-06 16:30:46