勾股定理的教学反思 篇1
勾股定理应用举例的教学反思本节课的教学目标很单一,就是利用勾股定理解决实际问题。我的教学过程很简单:在“学案导学”中的“课前预习案”中首先安排了一个关于梯子的简单问题让学生利用勾股定理进行解决,初步体会到勾股定理与我们的生活密切相关。在“课上导学”时用两只蚂蚁要走过最短距离吃芝麻的有趣实例作为例题,引导学生把看似复杂的问题转化用勾股定理来解决简单问题,从而提高学生用数学的能力。
教后反思:本节课自认为成功之处:实现了学习方式的转变。以“学案”为载体,充分利用“课前预习案”、“课上导学案”、“课后巩固案”的引导作用,调动学生学习的积极性和主动性,使学生爱学、乐学。充分体现了“教师角色向利于学生主动、自主、探究学习方向转变,让学生实现地位、尊严、个性、兴趣解放,促成师生之间民主和谐、平等合作关系”新课改精神。
数学来源于生活,数学服务于生活。从生活实际中得出数学知识,再回到实际生活中加以运用也是本节课的一个教学“亮点”。在本节课预习案中的梯子问题有着学生非常熟悉的生活背景,课上部分的蚂蚁吃芝麻以及课后的渡河要偏离目标点的情景相对来说也是学生比较感兴趣的问题,以此引入、深入勾股定理的应用,使数学教学在生活情境中得以创新。在课堂中,我积极让学生自己动手剪几个直角三角形边长为3、4、5;6、8、10;5、12、13,然后用勾股定理验证,激发学生的学习兴趣,充分地调动学生学习积极性,给学生留有思考和探索的余地,让学生能在独立思考与合作交流中解决学习中的问题。
在学习中,我注意到了学生的个体差异,要求不同的学生达到不同的学习水平。以小组为单位的合作学习解决了后进生学习难的问题,帮助他们克服了学习上的自卑心理。同时,对于一些学有余力的学生,教师也为他们提供了发展的机会,以小老师的身份去教学困者,这样既防止他们产生自满情绪,又让他们始终保持着强烈的求知欲望,使他们在完成这种任务的过程中获得更大的发展。这样大部分学生都能在老师的帮助下完成学习任务,从而增强了学生的学习兴趣,降低了认知难度。本节课的不足之处及改进方法:学生在应用勾股定理解决问题过程中书写过程不够规范和严谨,11---20数的平方掌握的不好,在计算技巧方面还有在与提高和加强。
勾股定理的应用范围比较广,学生应用定理解决实际问题还应多练。教学没有彻底放开。回忆一下本节课的教学,我感到我的教学还是没有彻底放开,和新的课程理念的要求存在着差距。如教学设计中的问题都是教者提出的,“学案导学”中的一切活动都是在我精心安排下进行的,还是有教师牵着学生鼻子走的做法。
勾股定理的教学反思 篇2
三角学里有一个很重要的定理,我国称它为勾股定理,又叫商高定理。因为《周髀算经》提到,商高说过"勾三股四弦五"的话。
实际上,它是我国古代劳动人民通过长期测量经验发现的。他们发现:当直角三角形短的直角边(勾)是3,长的直角边(股)是4的时候,直角的对边(弦)正好是5。而。
这是勾股定理的一个特例。以后又通过长期的测量实践,发现只要是直角三角形,它的三边都有这么个关系。即
与它们相当的正整数有许多组
《周髀算经》上还说,夏禹在实际测量中已经初步运用这个定理。这本书上还记载,有个叫陈子的数学家,应用这个定理来测量太阳的高度、太阳的直径和天地的长阔等。
5000年前的埃及人,也知道这一定理的特例,也就是勾3、股4、弦5,并用它来测定直角。以后才渐渐推广到普遍的情况。
金字塔的底部,四正四方,正对准东西南北,可见方向测得很准,四角又是严格的直角。而要量得直角,当然可以采用作垂直线的方法,但是如果将勾股定理反过来,也就是说:只要三角形的三边是3、4、5,或者符合的公式,那么弦边对面的角一定是直角。
到了公元前540年,希腊数学家毕达哥拉斯注意到了直角三角形三边是3、4、5,或者是5、12、13的时候,有这么个关系:
他想:是不是所有直角三角形的三边都符合这个规律?反过来,三边符合这个规律的,是不是直角三角形?
他搜集了许多例子,结果都对这两个问题作了肯定的回答。他高兴非常,杀了一百头牛来祝贺。
以后,西方人就将这个定理称为毕达哥拉斯定理
勾股定理的教学反思 篇3
本节课主要通过勾股定理的证明探索,使学生进一步理解和掌握勾股定理。通过利用质疑、拼图观察、思考、猜想、推理论证这一过程,培养学生探求未知数学知识的能力和方法,培养学生求异思维能力、认知能力、观察能力和独立实践能力。学生独立或分组进行拼图实验,教师组织学生在实验过程中发现的有价值的实验结果进行交流和展示。本节课的过程由激趣、质疑、实验、求异、探索、交流、延伸组成。
本节课的成功之处:
1、创设情景,实例导入,激发学生的学习热情。
2、由于实现了教师角色的转变,教法的创新,师生的平等,气氛的活跃,学生积极参加。
3、面向全体学生,以人为本的教育理念落实到位。整节课都是学生自主实验、自主探索,自主完成由形到数的转化。学生勇于上讲台展示研究成果,教师只是起到组织、引导作用。
4、通过学生动手实验,上台发言,展示成果,体验了成功的喜悦。学生的自信心得到培养,个性得到张扬。通过当场展示,让学生体会到动手实践在解决数学问题中的重要性,同时也让学生体会到用面积来验证公式的直观性、普遍性。
5、学生的研究成果极大地丰富了学生对勾股定理的证明的认识,学生从中获得利用已知的知识探求数学知识的能力和方法。这对学生今后的学习和将来的发展是大有裨益的。同时验证勾股定理的证明的探究,使学生形成一种等积代换的思想,为今后的学习奠定基础。
本节课的不足之处及改进思路:
1、小部分能力基础和能力都比较差的学生在探索过程中无所事事,因此教师应该在课前对不同层次的学生提出不同的要求,让每个学生多清楚地知道这节课自己的任务是什么。
2、本节课拼图验证的方法是以前学生很少接触的,所以在探索过程中很多学生都显得有些吃力。所以教师在讲方法一时,应该先介绍这种证明方法以及思路,让学生模仿第一种方法的基础上,能轻松地总结出第二种方法,从而产生去探索更多方法的兴趣和动力,有利于学生的数学思维的提升。
3、对学生的人文教育和爱国教育不够。很多学生在探索过程中遇到困难时,选择放弃或等别人的答案。教师此时应该注意引导学生要勇于克服困难,主动进行探索,提高了自身的推理能力和创新精神。同时教师也要不断渗透爱国教育,培养学生的民族自豪感和爱国热情。
在我们的数学教学中,活动课是不可忽视的内容。在这个探索的过程中,学生绝大多数是不会创造或发明什么的,这是一个素质的表现和培养过程。学生得到什么结果是次要的,重要的是使学生的素质和能力得到培养。这是中学数学活动课的价值取向。
勾股定理的教学反思 篇4
一、教师我的体会:
①、我根据学生实际情况认真备课这节课,书本总共两个例题,且两个例题都很难,如果一节课就讲这两题难题,那一方面学生的学习效率会比较低,另一方面会使学生畏难情绪增加。所以,我简化教材,使教材易于操作,让学生易于学习,有利于学生学习新知识、接受新知识,降低学习难度。
把教材读薄,
②、除了备教材外,还备学生。从教案及授课过程也可以看出,充分考虑到了学生的年龄特点:对新事物有好奇心,但对新知识的钻研热情又不够高,这样,造成教学难度较大,为了改变这一状况,在处理教材时,把某些数学语言转换成通俗文字来表达,把难度大的运用能力降低为难度稍细的理解能力,让学生乐于面对奥妙而又有一定深度的数学,乐于学习数学。
③、新课选用的例子、练习,都是经过精心挑选的,运用性强,贴近生活,与生活实际紧密联系,既达到学习、巩固新知识的目的,同时,又充分展现出数学教学的重大特征:数学源于生活实际,又服务于生活实际。勾股定理源于生活,但同时它又能极大的为生活服务。
④、使用多媒体进行教学,使知识显得形象直观,充分发挥现代技术作用。
二、学生体会:
课前,我们也去查阅了一些资料,关于勾股定理的证明以及有关的一些应用,通过这节课,真真发现勾股定理真真来源于生活,我们的几何图形和几何计算对于勾股定理来说非常广泛,而且以后更要用好它。对于勾股定理都应用时,我觉得关键是找到相关的三角形,并且分清直角边或斜边,灵活机智地进行计算和一些推理。另外与同学间在数学课上有自主学习的机会,有相互之间的讨论、争辩等协作的机会,在合作学习的过程中共同提高我觉得都是难得的机会。锻炼了能力,提高了思维品质,并且勾股定理的应用中我觉得图形很美,古代的数学家已经有了很好的研究并作出了很大的贡献,现代的艺术家们也在各方面用到很多,同时在课堂中渐渐地培养了我们的数学兴趣和一定的思维能力。
不过课堂上老师在最后一题的画图中能放一放,让我们有时间去思考怎么画,那会更好些,自然思维也得到了发展。课上老师鼓励我们尝试不完善的甚至错误的意见,大胆发表自己的见解,体现了我们是学习的主人。数学课堂里充满了智慧。
勾股定理的教学反思 篇5
反思之一:教学观念的转变。
“教师教,学生听,教师问,学生答,教师出题,学生做”的传统教学摸模式,已严重阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1平方米到底有多大?因此,《新课标》要求老师一定要改变角色,变主角为配角,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。上这节课前教师可以给学生布置任务:查阅有关勾股定理的资料(可上网查,也可查阅报刊、书籍),提前两三天由几位学生汇总(教师可适当指导)。这样可使学生在上这节课前就对勾股定理历史背景有全面的理解,从而使学生认识到勾股定理的重要性,学习勾股定理是非常必要的,激发学生的学习兴趣,对学生也是一次爱国主义教育,培养民族自豪感,激励他们奋发向上,同时培养学生的自学能及归类总结能力。
反思之二:教学方式的转变。
学生学会了数学知识,却不会解决与之有关的实际问题,造成了知识学习和知识应用的脱节,感受不到数学与生活的联系,这是当今课堂教学存在的普遍问题,对于学生实践能力的培养非常不利的。现在的数学教学到处充斥着过量的、重复的题目训练。我认为真正的教学方式的转变要体现在这两个方面:一是要关注学生学习的过程。首先要关注学生是否积极参加探索勾股定理的活动,关注学生能否在活动中积思考,能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理的表达活动过程和所获得的结论等;同时要关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理。二是要关注学生学习的知识性及其实际应用。本节课的主要目的是掌握勾股定理,体会数形结合的思想。现在往往是学生知道了勾股定理而不知道在实际生活中如何运用勾股定理,我们在学生了解勾股定理以后可以出一个类似于《九章算术》中的应用题:在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖与水面平齐,已知水草移动的水平距离为6分米,问这里的水深是多少?
教学方式的转变在关注知识的形成同时,更加关注知识的应用,特别是所学知识在生活中的应用,真正起到学有所用而不是枯燥的理论知识。这一点上在新课标中体现的尤为明显。
反思之三:多媒体的重要辅助作用。
课堂教学中要正确地、充分地引导学生探究知识的形成过程,应创造让学生主动参与学习过程的条件,培养学生的观察能力、合作能力、探究能力,从而达到提高学生数学素质的目的。多媒体教学的优化组合,在帮助学生形成知识的过程中扮演着重要的角色。通过面积计算来猜想勾股定理或是通过面积割补来验证勾股定理并不是所有的学生都是很清楚,教者可通过多媒体来演示其过程不仅使知识的形成更加的直观化,而且可以提高学生的学习兴趣。
反思之四:转变教学的评价方式,提高学生的自信心。
评价对于学生来说有两种评价的方式。一种是以他人评价为基础的,另一种是以自我评价为基础的。每个人素质生成都经历着这两种评价方式的发展过程,经历着一个从学会评价他人到学会评价自己的发展过程。实施他人评价,完善素质发展的他人监控机制很有必要。每个人都要以他人为镜,从他人这面镜子中照见自我。但发展的成熟、素质的完善主要建立在自我评价的基础上,是以素质的自我评价、自我调节、自我教育为标志的。因此要改变单纯由教师评价的现状,提倡评价主体的多元化,把教师评价、同学评价、家长评价及学生的自评相结合。
在本节课的教学中,老师可以从多方面对学生进行合适的评价。如以学生的课前知识准备是一种态度的评价,上课的拼图能力是一种动手能力的评价,对所结论的分析是对猜想能力的一种评价,对实际问题的分析是转化能力的一种评价等等。
勾股定理的教学反思 篇6
课堂教学中要正确地、充分地引导学生探究知识的形成过程,应创造让学生主动参与学习过程的条件,培养学生的观察能力、合作能力、探究能力,从而达到提高学生数学素质的目的。多媒体教学的优化组合,在帮助学生形成知识的过程中扮演着重要的角色。通过面积计算来猜想勾股定理或是通过面积割补来验证勾股定理并不是所有的学生都是很清楚,教者可通过多媒体来演示其过程不仅使知识的形成更加的直观化,而且可以提高学生的学习兴趣。
在本节课的教学中,老师可以从多方面对学生进行合适的评价。如以学生的课前知识准备是一种态度的评价,上课的拼图能力是一种动手能力的评价,对所结论的分析是对猜想能力的一种评价,对实际问题的分析是转化能力的一种评价等等。只有老师给予学生适时的适当的评价,才能使学生充分认识到自身的价值,从而达到提高学生学习自信心的目的,反过来自信心的提高又促使学生学习的积极性大幅度的提高,真正达到从他律转为自律的目的。也只有这样才能提高课堂的教学效果,提高学生的学习成绩。
我相信教者只有不断的反思自己的教学,不但能很好地实施新课改,实现课改的根本目的,同时能真正的提高学生学习成绩。
勾股定理的教学反思 篇7
这次展示课,我上的是八年级数学课《17.2勾股定理的逆定理》,我是根据“五步三查”课堂模式来设计“导学案”和组织教学的。这次课相对于过去基础上的课堂改革是完全不同的课,其进步之处之一是规范了课堂的结构,明确了课堂模式“五步三查”,操作上更能心中有数。进步之二是发挥学生的积极性方式与手段更多些,“老师需要什么?就评价什么”,进行了有益的尝试,将评价纳入整个课堂,如何通过开展小组的评比与竞赛调动学生积极性及学习氛围积累了经验。进步之三是“导学案”的编写上更适和学生,更有利于对课堂的指导。进步之四是课堂效率和课堂效果更好。进步之五学生的主体作用得到了真正的体现。进步之六是课堂不仅成了学习知识的地方,更是增进情感、培养能力的地方。
这次展示课也有待改进的地方,其一是“五步三查”模式操作细节不清楚,对整个操作流程理解不到位,导致整个课堂有些乱,因不能多讲,又不放心学生学。其二是学生的能力培养还应下大功夫,过去是以老师讲为主,学生只是听记,现在要他们自学、讨论,同学们还不习惯,导致课堂有些沉闷。其三是时间紧,教学任务完不成,课堂的知识掌握度、能力目标达成度较低。其四是“五步三查”各细节的科学性、有效性落实,有许多细节的落实与协调有待深化,如如何评价?如何有效利用评价得分?如何有效独学?其五是“导学案”如何更科学编制?体现分层同时又能更有利于指导学生的学,也有利于指导教师的教。其六更主要的是老师的观念,树立学生为主体的观念,将学生发展落实到教育教学各环节这才是根本。勇于变革和创新,积极研究和实践才能保障我们的课堂改革更顺利推进。虽然存在这样多,或更多的问题,但对其前景我们每一个人都充满了信心,我们相信只有这样做才能真正达到教育的目标。
勾股定理的教学反思 篇8
教材分析
1.勾股定理的逆定理是研究特殊三角形——直角三角形的一种判定方法,体现了数形结合的思想。
2.通过勾股定理与它的逆定理的学习,加深了学生对性质与判定之间辨证统一关系的认识。
3.完善了知识结构,为后继学习打下基础。
学情分析
初中生已经具备一定的独立思考和探索能力,并能在探索过程中形成自已的观点,能在倾听别人意见的过程中逐渐完善自已的想法,而且本班学生比较上进,思维活跃,愿意表达自已的见解,有一定的互动互助基础。
教学目标
1.知识与技能:
(1)理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。
(2)掌握勾股定理的逆定理,并能应用勾股定理的逆定理判定一个三角形是不是直角三角形。
2.过程与方法
(1)通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成过程。
(2)通过用三角形三边的数量关系来判断三角形的形状,体验数形结合方法的应用。
(3)通过对勾股定理的逆定理的证明,体会数形结合方法在问题解决中的作用,并能应用勾股定理的逆定理来解决相关问题。
3.情感态度
(1)通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐与辨证统一的关系
(2)在探索勾股定理的逆定理的活动中,通过一系列的富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
教学重点和难点
教学重点:勾股定理的逆定理及起应用
教学难点:勾股定理的逆定理的证明
勾股定理的教学反思 篇9
从内容上看勾股定理只有一句话:"两直角边的平方和等于斜边的平方",但教材安排了三个课时,从教学目标上分析总结:
(一)本节课在知识技能上要求掌握勾股定理的内容,并能用勾股定理解决一些实际问题;
(二)在过程和方法上
1、让学经历探究、测量、拼图、发现、验证应用的过程,让学生感受数形结合、转化和从特殊到一般的数学思想。
2、通过动手操作、小组合作、共同思考探索勾股定理证明的过程,让学生掌握数学图形的割补技巧和代数恒等关系在几何中的灵活运用。
(三)在情感态度价值观上
1、让学生体验探究的乐趣,培养学生解决问题能力和克服苦难的决心,感悟数与形之间的美妙结合,激发学生学习数学的自信心。
2、通过介绍勾股定理的历史小故事,增强学生的民族自豪感,激发学生努力学习的意志。
勾股定理的教学反思 篇10
勾股定理的探索和证明蕴含丰富的数学思想和研究方法,是培养学生思维品质的载体。它对数学发展具有重要作用。勾股定理是一坛陈年佳酿,品之芬芳,余味无穷,以简洁优美的形式,丰富深刻的内涵刻画了自然界和谐统一关系,是数形结合的优美典范。教学中我以教师为主导,以学生为主体,以知识为载体,以培养能力为重点。为学生创设“做数学、玩数学”的教学情境,让学生从“学会”到“会学”,从“会学”到“乐学”。
1、查资料
我让学生课前查阅有关勾股定理资料,学生对勾股定理历史背景有初步了解,学生充满自信迎接新知识《勾股定理》学习的挑战。
学生查得资料:世界许多科学家寻找“外星人”。1820年,德国数学家高斯提出,在西伯利亚森林伐出直角三角形空地,在空地种上麦子,以三角形三边为边种上三片正方形松树林,如果有外星人路过地球附近,看到这个巨大数学图形,便知道:这个星球上有智慧生命。我国数学家华罗庚提出:要沟通两个不同星球的信息交往,最好利用太空飞船带上这个图形,并发射到太空中去。
2、讲故事
毕达哥拉斯是古希腊数学家。相传2500年前,毕达哥拉斯在朋友家做客,发现朋友家用地砖铺成地面反映了直角三角形三边的数量关系。
我讲毕达哥拉斯故事,提出问题。学生独立思考,提出猜想。我配合演示,使问题形象、具体。教学活动从“数小方格”开始,起点低、趣味性浓。学生在伟人故事中进行数学问题的讨论和探索。平淡无奇现象中隐藏深刻道理。
3、提问题
“问题是思维的起点”,一段生动有趣的动画,点燃学生求知欲,以景激情,以情激思,引领学生进入学习情境,学生带着问题进课堂。
例如:一架长为10m的梯子AB斜靠在墙上,若梯子的顶端距地面的垂直距离为8m。如果梯子的顶端下滑2m,那么它的底端是否也滑动2m?
尽管学生讲的不完全正确,但培养了学生运用数学语言进行抽象、概括的能力,学生经历了应用勾股定理解决问题的思考过程,学生增长了知识,学生增长了智慧。
例如:《九章算术》记载有趣问题:有一个水池,水面是边长为10尺的正方形,在水池的中央有一根新生芦苇,它高出水面1尺,若把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面,问这个水池深度和这根芦苇长度各是多少?
我通过“著名问题”探究,让学生了解勾股定理的古老与神奇。问题本身具有极大挑战性,激发了学生强烈求知欲,激发了学生探究知识的愿望。学生讨论交流,发现用代数观点证明几何问题的思路。我配以演示,分散了难点,培养了学生发散思维、探究数学问题的能力。
4、讲证法
我抛砖引玉介绍赵爽弦图,赵爽用几何图形截、割、拼、补证明代数恒等关系,具有严密性,直观性,是中国古代以形证数、形数统一的典范。赵爽指出:四个全等直角三角形拼成一个中空的正方形,大正方形面积等于小正方形面积与4个三角形面积和。“赵爽弦图”表现了我国古代人对数学的钻研精神和聪明才智,它是我国数学的骄傲。这个图案被选为20xx年北京召开的国际数学家大会会徽。
随后展示了美国总统证法。1876年4月1日,美国伽菲尔德在《新英格兰教育日志》发表勾股定理的证法。1881年,伽菲尔德就任美国总统,为了纪念他直观、简捷、易懂、明了的证明,这一证法被称为“总统”证法。我感觉学生是小小发明家。学生在建构知识的同时,欣赏作品享受成功的喜悦。
5、巧设计
练习设计我立足巩固,着眼发展,兼顾差异,满足学生渴望发展要求。练习有基础训练,变式训练,中考试题,引出勾股树,学生惊叹奇妙的数学美。课内知识向课外知识延伸,打开了学生思路,给学生提供了广阔空间。数学教学变得生机勃勃,学生喜欢数学,热爱数学。
我让学生讲解搜集资料,丰富了学生背景知识,体现了自主学习方式。我对学生进行爱国主义教育,激发了学生民族自豪感和奋发向上学习精神。我让学生欣赏丰富多彩的数学文化,展示五彩斑斓的文化背景,激发了学生的爱国热情。
6、善总结
课堂小结是对教学内容的回顾,是对数学思想、方法的总结。我强调重点内容,注重知识体系的形成,培养了学生反思习惯。
我还想对同学们说:牛顿——从苹果落地最终确立了万有引力定律,我们——从朝夕相处的三角板发现了勾股定理,虽然两者尚不可同日而语,但探索和发现——终有价值,也许就在身边,也许就在眼前,还隐藏着无穷的“万有引力定律”和“勾股定理”……
祝愿同学们,修得一个用数学思维思考世界的头脑,练就一双用数学视角观察世界的眼睛,开启新的探索——发现平凡中的不平凡之谜……
勾股定理的教学反思 篇11
本节课以活动为主线,通过从估算到实验活动结果的产生让学生总结过程,最后回到解决生活中实际问题,思路清晰,脉络明了。
例如:活动1问题:据说古埃及人用下图的方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。
1、这个问题意味着,如果围成的三角形的三边分别为3、4、5.那么围成的三角形是直角三角形.
2、体现了“数学源于生活,寓于生活,用于生活”的教育思想;突出了“特征让学生观察,思路让学生探索,方法让学生思考,意义让学生概括,结论让学生验证,难点让学生突破,以学生为主体”的教学思路。同学们经过操作,观察,探究,归纳得到直角三角形的判定,由感性认识上升到理性认识,能力得到提升。
3、在教学活动过程中,我经常走下讲台,到学生中去,以学生身份和学生一起探讨问题。用一切可能的方式,激励回答问题的学生,激发学生的求知欲,使师生在和谐的教学环境中零距离的接触。课堂上学生们的思维空前活跃,发言的人数不断增多,学生能从多角度认识问题,争先恐后地交流不同的意见和方法,收到比较好的效果。
勾股定理的教学反思 篇12
对于“勾股定理的应用”的反思和小结有以下几个方面:
1、课前准备不充分:
基础题中是一些由正方形和直角三角形拼合而成的图形(与希腊邮票设计原理相同),其中两个正方形的面积分别是14和18,求最大的正方形的面积。
分析:由勾股定理结论:直角三角形中两直角边的平方和等于斜边的平方。
其实质即以直角三角形两直角边为边长的两个正方形面积之和等于以斜边为边长的正方形的面积。但学生竟然不知道。其二是课件准备不充分,其中有一道例题的答案是跟着例题同时出现的,再去修改,又浪费了一点时间。其三,用面积法求直角三角形的高,我认为是一个非常简单的数学问题,但在实际教学中,发现很多学生仍然很难理解,说明我在备课时备学生不充分,没有站在学生的角度去考虑问题。
2、课堂上的语言应该简练。这是我上课的最大弱点,我不敢放手让学生去独立思考问题,会去重复题目意思,实际上不需要的,可以留时间让学生去独立思考。教师是无法代替学生自己的思考的,更不能代替几十个有差异的学生的思维。课堂上老师放一放,学生得到的更多,老师放多少,学生就有多大的自主发展的空间。但这里的“放多少”是一门艺术,我要好好向老教师学习!
3、鼓励学生的艺术。教师要鼓励学生尝试并尊重他们不完善的甚至错误的意见,经常鼓励他们大胆说出自己的想法,大胆发表自己的见解,真正体现出学生是数学学习的主人。
4、启发学生的技巧有待提高。启发学生也是一门艺术,我的课堂上有点启而不发。课堂上应该多了解学生。
勾股定理的教学反思 篇13
在讲解勾股定理的结论时,为了让学生更好地理解和掌握勾股定理的探索过程,先让学生自己进行探索,然后同学进行讨论,最后上台演示。这样可以加深学生的参与,也让师生间、生生间有了互动。然后老师再利用电脑演示直角三角形中勾股定理的探索过程。反复演示几遍,让学生自己感觉并最后体会到勾股定理的结论。通过动画演示体会到解决问题的方法是多种多样,使得这课的重难点轻易地突破,大大提高了教学效率,培养了学生的解决问题的能力和创新能力。学生在这一过程中各显神通,都得到了解决问题的满足感和自豪感。
在教学应用勾股定理时,老是运用公式计算,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:即折竹抵地问题。同学们一看,兴趣来了。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生的想像力。
最后介绍了勾股定理的历史,并且推荐了一些网站,让学生下课之后进行查阅、了解。只是为了方便学生到更广阔的知识海洋中去寻找知识宝藏,利用网络检索相关信息,充实、丰富、拓展课堂学习资源,提供各种学习方式,让学生学会选择、整理、重组、再用这些更广泛的资源。这种对网络资源的重新组织,使学生对知识的需求由窄到宽,有力的促进了自主学习。这样学生不仅能在课堂上学习到知识,还让他们有了怎样学习知识的方法。这就达到了新课标新理念的预定目标。
数学有与其他学科不同的特点,自然科学常发生新理论代替旧理论的情形,但数学不会如此。数学学习是数学发展史的缩影,是一个累进过程。勾股定理是人类几千年的文化遗产,是经典的定理,拥有科学简洁的数学语言。而数学教学的核心不是知识本身,而是数学的思维方式。认识是个人独特的构造结果,人的思维活动有强烈的个性特征。每个学生都有自己的生活背景、家庭环境,这种特定的文化氛围,导致不同的学生有不同的思维方式和解决问题的策略。学生已有丰富的数学活动经验,特别是运用数学解决问题的策略。学生只有用自己创造与体验的方法来学习数学,才能真正地掌握数学。因而数学教学要展现数学的思维过程,要学生领会和实现数学化,自己去“发现”结果。这一课的学习就主要通过让学生自主地探索知识,从而将其转化为自己的,真正做到了先激发兴趣,再合作交流,最后展示成果的自主学习。这堂课将信息技术融入利于创设教学环境,教学模式将从以教师讲授为主转为以学生动脑动手自主研究、小组学习讨论交流为主,把数学课堂转为“数学实验室”,学生通过自己的活动得出结论、使创新精神与实践能力得到了发展。
勾股定理的教学反思 篇14
“教师教,学生听,教师问,学生答,教师出题,学生做”的传统教学摸模式,已严重阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1平方米到底有多大?因此,《新课标》要求老师一定要改变角色,变主角为配角,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。上这节课前教师可以给学生布置任务:查阅有关勾股定理的资料,提前两三天由几位学生汇总(教师可适当指导)。这样可使学生在上这节课前就对勾股定理历史背景有全面的理解,从而使学生认识到勾股定理的重要性,学习勾股定理是非常必要的,激发学生的学习兴趣,对学生也是一次爱国主义教育,培养民族自豪感,激励他们奋发向上,同时培养学生的自学能力及归类总结能力。
勾股定理的教学反思 篇15
我用了4课时讲授了八年级下册数学人教版的第十八章第一节勾股定理,第一课时我主要讲授的是勾股定理的探究和验证,并举例计算有关直角三角形已知两边长求第三边的问题;第二课时我主要讲授了各种类型的有关直角三角形边长或者面积相关问题;第三课时讲授了如何用勾股定理解决生活中的实际问题;第四课时主要讲授了怎样在数轴上找出无理数对应的点。这4个课时我采用的教学方法是:引导—探究—发现法;为学生设计的学习方法是:自主探究与合作交流相结合。
第一课时的课堂教学中,我始终注意了调动学生的积极性。兴趣是最好的老师,所以无论是引入、拼图,还是历史回顾,我都注意去调动学生,让学生满怀激情地投入到活动中。因此,课堂效率较高。勾股定理作为“千古第一定理”,其魅力在于其历史价值和应用价值,因此我注意充分挖掘了其内涵。特别是让学生事先进行调查,再在课堂上进行展示,这极大地调动了学生,既加深了对勾股定理文化的理解,又培养了他们收集、整理资料的能力。勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,我设计了拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破了本节课的难点。
第二课时我依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习。教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点。为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理。
第三课时在课堂教学中,始终注重学生的自主探究,由实例引入,激发了学生的学习兴趣,然后通过动手操作、大胆猜想、勇于验证等一系列自主探究、合作交流活动得出定理,并运用定理进一步巩固提高,切实体现了学生是数学学习的主人的新课程理念。对于拼图验证,学生还没有接触过,所以,教学中,教师给予了学生适当的指导与鼓励,教师较好地充当了学生数学学习的组织者、引导者、合作者。另外教会学生思维,培养学生多种能力。课前查资料,培养了学生的自学能力及归类总结能力;课上的探究培养了学生的动手动脑的能力、观察能力、猜想归纳总结的能力、合作交流的能力……但本节课拼图验证的方法以前学生没接触过,稍嫌吃力。因此,在今后的教学中还需要进一步关注学生的实验操作活动,提高其实践能力。
第四课时我另外向学生介绍了勾股定理的证明方法:以赵爽的“弦图”为代表,用几何图形的截、割、拼、补,来证明代数式之间的恒等关系;以欧几里得的证明方法为代表,运用欧氏几何的基本定理进行证明;以刘徽的“青朱出入图”为代表,“无字证明”。
总的来看,学生掌握的情况比较好,都能够达到预期要求,但介于有关勾股定理的类型题很多,不能一一为学生讲解,但我还是建议将北师大版本中的《蚂蚁怎样走最近》的类型题加入本教材。
勾股定理的教学反思 篇16
我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾(短直角边)等于三,股(长直角边)等于四,那么弦等于五。即“勾三、股四、弦五”。它被记载于我国古代著名的数学著作《周髀算经》中,在这本书的另一处,还记载了勾股定理的一般形式。中国古代的几何学家研究几何是为了实用,是唯用是尚的。在讲完《勾股定理逆定理》这节课后,我的反思如下:
本节课的教学目标是:在掌握了勾股定理的基础上,让学生如何从三边的关系来判定一个三角形是否为直角三角形.即:勾股定理的逆定理。
勾股定理的逆定理的教学设计说明:本教教学设计是围绕勾股定理的逆定理的证明与应用来展开,结合新课标的要求,根据我班学生的认知结构与教材地位为了达到本节课的教学目标,我做了以下设计(也是成功之处):
一、创设情境,提出猜想达到直观性的教学要求。让几个学生要全班同学前面做一个“数学实验”,三条分别为:3,4,5的三角形是一个直角三角形。第二步骤是让学生画已知三边的一定长度的三角形,判断是不是直角三角形,并分析三边满足什么关系条件,同时,引导学生从特殊到一般提出猜想。
二、将教学内容精简化.考虑到我所教班级的学生认识水平,做了如下教学设计:⑴将教学目标定为让学生掌握勾股定理的逆定理.以及逆定理的应用,而对于本课中逆定理的证明.以及其探究都放在一下节课再进行讲解.⑵对于本课中所出现了的逆定理的定义,及其真假性的判断也简单化.本节课也不详细讲.本节课的的重点放在掌握勾股定理的逆定理,及其应用.从课堂效果来看,这样的教学设计是合理的,学生较好的掌握了勾股定理的逆定理,所以取得了良好的课堂效果。
三、应用训练,巩固新知为了巩固新知,灵活运用所学知识解决相应问题,提高学生的分析解题能力,基于对我班的学情分析,为了让学生都能动起手做,学案的设计上做了很多脚手架,目的就是让学生能够按照脚手架的步骤一步步完成,最终也形成了解题的“操作性”。此外,脚手架的设置对我们的中下水平的学生是很多帮助的.从课堂上看,他们也能在脚手架的帮助下,完成一定的题目中,而如果没有的话,这部分学生对一些基本的题都会束手无策.
四、实行分层教学,让不同水平的学生在同一课堂都能学好,为此,我设计了三个层次的问题,以达到分层教学目标:第一层次是让学生直接运用定理判断三角形是否是直角三角形,掌握定理基本运用;第二层次是强调已知三角形三边长或三边关系,就有意识的判断三角形是否是直角三角形,这样既巩固了勾股定理的逆定理的应用,又为下一个层次做好了铺垫;第三层次是灵活运用勾股定理与逆定理解决图形面积的计算问题.根据学生原有的认知结构,让学生更好地体会分割的思想.设计的题型前后呼应,使知识有序推进,有助于学生的理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验.真正体现学生是学习的主人.。将目标分层后,我设计的学案里的题目也是相应的进行了分层设计,满足不同层次的学生的做题要求,达到巩固课堂知识的目的。最后,布置作业,也是分层布置的,分为三层,对应不同的学生,让他们的作业都在他们的能力范围。
诚然,这节课也存在许多不足第一、新课导入部分:存在如下值得改进的地方:
①复习旧知部分,复习勾股定理的内容应用了填空的形式,这个形式不是最佳的.因为学生书写勾股定理耗时,既使书写出来,复习效果也不太好。最佳的应该是以简单的题目形式来复习勾股定理,这样快而有效。
②如何从复习勾股定理中巧妙的切入本课的主题,过渡语的设置,应该将过渡语言简单明了,可设计成:怎么从边的关系来判断一个三角形是直角三角形呢?这就是本节课要学习的内容。
③导入部分的课时分配估计不足,显得冗长,也一定程度上造成后面的教学时间紧张。应该对导入部分的时效再进行分析简化。
第二存在的问题是:
(1)脚手架设计的太多,本节课有一定的脚手架是合适的,太多了,反而不利于学生自己的书写规范性,过程的掌握等,
(2)练习题题量过大,本节课的练习题大部分都是重复一些基本的操作,没有必要太多简单的题目,可以适当去掉.对于数字的设计可以更加科学化一点,应该让学生方便运算和节省时间.此外,对于层次较要的同学来说,应该设计更多一点综合性的题目。适当的增加一些提高题,以满足这一层次的学生的学习练习要求。
在备每一节课中,对于课堂的每一个细节,第一刻钟,第一个教学设计的思考都无不直接影响着你的这一节课,影响着你的课堂效果。静心思考,反思整个过程是一种全新的收获,也是全新的开始,让自己能够重新起步,向前。
勾股定理的教学反思 篇17
新课程改革要求我们:将数学教学置身于学生自主探究与合作交流的数学活动中;将知识的获取与能力的培养置身于学生形式各异的探索经历中;关注学生探索过程中的情感体验,并发展实践能力及创新意识。为学生的终身学习及可持续发展奠定坚实的基础。
为此我在教学设计中注重了以下几点:
一、让学生主动想学
上这节课前一个星期教师布置给学生任务:查有关勾股定理的资料(可上网查,也可查阅报刊、书籍)。提前两三天由几位学生汇总(教师可适当指导)。这样可使学生在上这节课前就对勾股定理历史背景有全面的理解,从而使学生认识到勾股定理的重要性,学习勾股定理是非常必要的,激发学生的学习兴趣,对学生也是一次爱国主义教育,培养民族自豪感,激励他们奋发向上。同时培养学生的自学能力及归类总结能力。
二、在课堂教学中,始终注重学生的自主探究
首先,创设情境,由实例引入,激发学生的学习兴趣,然后通过动手操作、大胆猜想、勇于验证等一系列自主探究、合作交流活动得出定理,并运用定理进一步巩固提高。体现了学生是数学学习的主人,人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
对于拼图验证,学生还没有接触过,所以在教学中教师给予学生适当指导与鼓励。充分体现了教师是学生数学学习的组织者、引导者、合作者。
三、教会学生思维,培养学生多种能力
课前查资料,培养学生的自学能力及归类总结能力;课上的探究培养学生的动手动脑的能力、观察能力、猜想归纳总结的能力、合作交流的能力……
四、注重了数学应用意识的培养
数学来源于实践,而又应用于实践。因此从实例引入,最后通过定理解决引例中的问题,并在定理的应用中,让学生举生活中的例子,充分体现了数学的应用价值。
整节课都是在生生互动、师生互动的和谐气氛中进行的,在教师的鼓励、引导下学生进行了自主学习。学生上讲台表达自己的思路、解法,体验了数形结合的数学思想方法,培养了细心观察、认真思考的态度。但本节课拼图验证的方法以前学生没接触过,稍嫌吃力。另在举勾股定理在生活中的例子时,学生思路不够开阔。以后要多培养学生实验操作能力及应用拓展能力,使学生思路更开阔。
勾股定理的教学反思 篇18
导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,在课的起始阶段,迅速集中学生的注意力,把他们思绪带进特定的学习情境中,激发起学生浓厚的学习兴趣和强烈的求知欲,对这堂课教学的成败与否起着至关重要的作用。运用多媒体展示这一有意义的图案,可有效地开启学生思维的闸门,激发联想,激励探究,使学生的.学习状态由被动变为主动,使学生在轻松愉悦的氛围中学到知识。
本节课把学生的探索活动放在首位,一方面要求学生在教师引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识.从而教给学生探求知识的方法,教会学生获取知识的本领.并确立了如下的教学目标:
1、学生经历从数到形再由形到数的转化过程,经历探求三个正方形面积间的关系转化为三边数量关系的过程。并从过程中让学生体会数形结合思想,发展将未知转化为已知,由特殊推测一般的合情推理能力。
2、让学生经历图形分割实验、计算面积的过程,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验,在过程中养成独立思考、合作交流的学习习惯;通过解决问题增强自信心,激发学习数学的兴趣。
3、通过老师的介绍,体会一种新的证明的方法——面积证法。并在老师的介绍中感受勾股定理的丰富文化内涵,激发生的热爱祖国悠久文化的思想感情,培养他们的民族自豪感。
除了探究出勾股定理的内容以外,本节课还适时地向学生展现勾股定理的历史,特别是通过介绍我国古代在勾股定理研究和运用方面的成就,激发学生爱国热情,培养学生的民族自豪感和探索创新的精神.练习反馈中既有勾股定理的基本应用,还有贴近学生生活的实例,既让学生感受到学习知识应用于生活的成就感,又使学生深刻了解勾股定理的广泛应用.让学生总结本堂课的收获,从内容,到数学思想方法,到获取知识的途径等方面.给学生自由的空间,鼓励学生多说.这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力.作业为了达到提高巩固的目的,期望学生能主动地探求对勾股定理更深入的认识、拓展学生的视野.
勾股定理的教学反思 篇19
通过本节课的教学,我采用了合作探究、操作体验的教学方式。在课堂教学中,首先创设情境,提出问题;再让学生通过做一做、测量、判断、找规律,猜想出一般性的结论;然后由学生想、做、量一量、猜一猜、去验证结论……使学生自始至终感悟、体验、尝试到了知识的生成过程,品尝着成功后带来的乐趣。这不仅使学生学到获取知识的思想和方法,同时也体会到在解决问题的过程中与他人合作的重要性,而且为学生今后获取知识以及探索、发现和创造打下了良好的基础,更增强了学生敢于实践、勇于探索、不断创新和努力学习数学知识的信心和勇气。
要想真正搞好以探究活动,小组合作为主的课堂教学,必须不断更新教学观念,使课堂真正成为学生既能自主探究,师生又能合作互动的场所,培养学生成为既有创新能力,又能够适应现代社会发展的公民
作为教师,在课堂教学中要始终牢记:学生才是学习的主体,学生才是课堂的主体;教师只是课堂教学活动的组织者、引导者与合作者。因此,课堂教学过程的设计,也必须体现出学生的主体性。
勾股定理的教学反思 篇20
本节课的设计目的是培养学生准确地将实际问题转化为数学问题,建立几何模型(即直角三角形),能正确远用勾股定理解释生活中问题,通过运用勾股定理对实际问题的解释和应用,进一步加强培养学生注意从身边的事物中抽象出几何模型(直角三角形)的能力,使学生更加深刻地认识到数学的本质:“数学来源于生活,同时又能服务于生活”,激起广大学生对数学对生活的热爱。
这节课主要是围绕“课前预习?—设置问题—几何建模—解决问题—相应练习、拓展延伸”这一主线轴展开教学工作。其中主要体现在:
首先,创设情境,激发兴趣。
由教材中的实例引入,让学生猜一猜,梯的顶端下滑0.5米,问梯的底端将滑动多少米?也是滑动0.5米吗?学生将会得出不同的反应,甚至争论;这时教师就恰到好处地引导学生建立几何模型(即直角三角形)再运用勾股定理解决问题,最终来验证彼此的猜想,这样一来,课堂气氛特别轻松,学生解决问题的兴趣也格外浓。
其次,注重学生自主探究,合作交流。
在探讨例1、例2时都是先让学生根据生活经验,猜一猜结论,然后再动手建摸、验证、质疑、讨论,充分体现了学生的主体地位,学生是发现者、探索者,教师是参入学习的启发者、协调者、激励者,体现出了教师的主导作用。
第三,创设机会,让学生学会思考,乐于思考、善于思考。
在教学中有意识地安排一些问题让学生多途径思考,发现答案多种多样,让他们体味出教学的精彩,享受做数学的成功喜悦。
通过备课、上课后,虽然取得一定成功,但感到作为一位数学教师,要不断地及时学习新的知识,接受新信息;不断地及时充电、更新、常常使用诙谐幽默的语言;既要有领导者组织指导、调控能力,又要有被学生欣赏佩服的魅力;要让学生课堂上配合你、信任你、喜欢你,只要达到了这一高度,我们才能轻松自如地驾御课堂,高效、高质、高量地完成教学预设目标。
勾股定理的教学反思 篇21
这节课重在导入,引起学生的兴趣,现谈谈本节课的反思:
1、从生活出发的教学让学生感受到学习的快乐。
在“勾股定理”这节课中,一开始引入情景:
平平湖水清可鉴,荷花半尺出水面。
忽来一阵狂风急,吹倒荷花水中偃。
湖面之上不复见,入秋渔翁始发现。
花离根二尺远,试问水深尺若干。
知识回味:复习勾股定理及它的公式变形,然后是几组简单的计算。
2、走进生活:以装修房子为主线,设计木板能否通过门框,梯子底端滑出多少,求蚂蚁爬的最短距离,这些都是勾股定理应用的典型例题。
3、在教学应用勾股定理时,老是运用公式计算,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:即折竹抵地问题。并且将问题用动画的形式展现出来,不仅将问题形象化,又提高了学生的学习兴趣。同时将实际的问题转化为数学问题的过程用直观的图形表示,在降低难度的同时又鼓励了学生能够看到身边的数学,从而做到学以致用。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生之间的合作。
4、最后介绍了勾股定理的历史,并且推荐了一些网站,让学生下课之后进行查阅、了解。这是为了方便学生到更广阔的知识海洋中去寻找知识宝藏,利用网络检索相关信息,充实、丰富、拓展课堂学习资源,提供各种学习方式,让学生学会选择、整理、重组、再用这些更广泛的资源。这种对网络资源的重新组织,使学生对知识的需求由窄到宽,有力的促进了自主学习。这样学生不仅能在课堂上学习到知识,还让他们有了怎样学习知识的方法。这就达到了新课标新理念的预定目标。
通过本节课的教学,学生在勾股定理的学习中能感受“数形结合”和“转化”的数学思想,体会数学的应用价值和渗透数学思想给解题带来的便利;感受人类文明的力量,了解勾股定理的重要性。真正做到了先激发兴趣,再合作交流,最后展示成果的自主学习。这堂课将信息技术融入课堂,有利于创设教学环境,教学模式将从以教师讲授为主转为以学生动脑动手自主研究、小组学习讨论交流为主,把数学课堂转为“数学实验室”,学生通过自己的活动得出结论、使创新精神与实践能力得到了发展。不足之处:学生合作意识不强,讨论气氛不够活跃;计算不熟练,书写不规范。
勾股定理的教学反思 篇22
星期四下午讲了《勾股定理逆定理》第一课时,现对本节课反思如下:
(1)这节课的设计思路比较合理:着重体现“探究”这一主题,从“古埃及人得到直角三角形的方法”到学生用木棒模仿操作,再到画图自己证明等一系列活动,得出“勾股定理逆定理”,而对互逆命题,原命题,逆命题等概念的讲解只是作为新课引入的命题点化了一下,没有详细讲解、把这节课的重点放在了如何让学生通过三角形三边关系判断是否是直角三角形?在经过课堂练习及课堂检测来强化学生对勾股定理逆定理的理解,分别从三角形的边和角这方面来引导学生。
(2)本课PPT的使用是想凸显“特征让学生观察,思路让学生探索,方法让学生思考,意义让学生概括,结论让学生验证,难点让学生突破,以学生为主体”的教学思路,每个环节都是紧密相接的。
(3)课堂教学环节和教学效果我感觉很满意,学生在对问题的回答很积极,在突破难点的过程中,学生通过小组合作实验交流,自己总结归纳勾股定理逆定理,及证明中我给与学生充分的思考时间让学生自己完成。整个过程中体现了以学生为主,老师为主导的作用,课堂气氛活跃,效果挺好。
本节课的不足之处及改进方法:
1、本节课我没有及时发现学生的错误。在学生上黑板做题时出现的错误没能及时发现及改正。
2、课堂检测做完后应让学生自己讲解,但时间不够导致这一环节没能让学生完成,而是在投影对了答案。
在以后教学中,我会不断地更新教育理念,结合学生的认知规律、生活经验对数教材进行再创造,选取密切联系学生现实生活和生动有趣的数学素材,为学生提供充分的数学活动和交流的空间,真正把创造还给学生,让学生动起来,让课堂焕发新的活力。
勾股定理的教学反思 篇23
勾股定理的探索和证明蕴含着丰富的数学思想和数学方法,是培养学生良好思维品质的最佳载体。它以简洁优美的图形结构,丰富深刻的内涵刻画了自然界的和谐统一的关系,是数形结合的完美典范。著名数学家华罗庚就曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言。为让学生通过对这节课的学习得到更好的历练,在教学时,特别注重从以下几个方面入手:
一、注重知识的自然生发。
传统的教学中,教师往往喜欢压缩理论传授过程,用充足的时间做练习,以题代讲,搞题海战术。但从学生的发展来着,如果压缩数学知识的形成过程,不讲究知识的自然生发,学生获取知识的过程是被动的,形成的体系也是孤立的,长此以往,学生必将错过或失去思维发展和能力提高的机遇。在这节课上,不刻意追求所谓的进度,更没有直接给出勾股定理,而是组织学生开展画一画、看一看、想一想、猜一猜、拼一拼的活动,学生在活动思考、交流、展示中,逐渐的形成了对知识的自我认识和自我感悟。这样做不仅能帮助学生牢固掌握勾股定理,更重要的是使学生体会用自己所学的旧知识而获取新知识过程,使他们获得成功的喜悦,增强了学生主动性,同时他们的思维能力在知识自然形成的过程中不断发展。
二、注重数学课上的操作性学习
操作性学习是自主探究性学习有效途径之一,学生通过在实践活动中的感受和体验,有利于帮助学生理解和掌握抽象的数学知识。在这节课上,首先让学生动手画直角三角形,得出研究题材,然后又让学生利用四个直角三角形拼一拼,验证猜想。这样充分的调动了学生的手、口、脑等多种感官参与数学学习活动,既享受了操作的乐趣,又培养了学生的动手能力,加深了对知识的理解。
三、注重问题设计的开放性
课堂教学是教师组织、引导、参与和学生自主、合作、探究学习的双边活动。这其中教师的“引导”起着关键作用。这里的“引导”,很大程度上靠设疑提问来实现。在教学实践中,问题设计要具有开放性。因为开放性问题更有利于培养学生的创造性思维、体现学生的主体意识和个性差异。本节课在设计涂鸦直角三角形时,安排学生在方格纸上任意涂鸦一个直角三角形;在设计拼图验证环节时,安排学生任意拼出一个正方形或直角梯形,有意没指定画一个具体边长的直角三角形和正方形,就是不想对学生的思维给出太多的限制条件,给出更多的想象和创造空间。虽然探究的时间会更长,但这更符合实际知识的产生环境,学生只有在这样的环境下进行创造、发现和磨练,能力素养才会得到更有效的历练。
四、注重让学生经历完整的数学知识的发现过程。
新《数学课程标准》在关于课程目标的阐述中,首次大量使用了"经历(感受)、体验(体会)、探索"等刻画数学活动水平的过程性目标动词,就是要求在数学学习的过程中,让学生经历知识与技能形成与巩固过程,经历数学思维的发展过程,经历应用数学能力解决问题的过程,从而形成积极的数学情感与态度。教学从学生感兴趣的涂鸦开始,再经历观察、分析、猜想、验证的全过程,让学生充分的经历了完整的数学知识的发现过程,使学生获得对数学理解的同时,在知识技能、思维能力以及情感态度等多方面都得到了进步和发展。
如果有机会再上这节课,我想我会投入更多的精力对学生可能会给出的答案进行预想,以便在课堂上给予学生更多的启迪,让他们走的更远。一堂课,虽已结束,但对于生命课堂的领悟这条路,还有很长的路要走,我将继续上下求索,做学生更好的支点。
勾股定理的教学反思 篇24
本节课是公式课,探索勾股定理和利用数形结合的方法验证勾股定理。勾股定理是在学生已经掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个三角形三条边之间的数量关系,它是解直角三角形的主要根据之一,是直角三角形的一条非常重要的性质,也是几何中最重要的定理之一,它将形与数密切联系起来,在数学的发展中起着重要的作用,在现实世界中也有着广泛的作用.由此可见,勾股定理是对直角三角形进一步的认识和理解,是后续学习的基础。因此,本节内容在整个知识体系中起着重要的作用。
针对八年级学生的知识结构和心理特征,本节课的设计思路是引导学生‘做’数学”,选用“引导探究式”教学方法,先由浅入深,由特殊到一般地提出问题,接着引导学生通过实验操作,归纳验证,在学生的自主探究与合作交流中解决问题,这样既遵循了学生的认知规律,又充分体现了“学生是数学学习的主人、教师是数学学习的组织者、引导者与合作者”的教学理念.通过教师引导,学生动手、动脑,主动探索获取新知,进一步理解并运用归纳猜想,由特殊到一般,数形结合等数学思想方法解决问题。同时让学生感悟到:学习任何知识的最好方法就是自己去探究。
本节课采用的教学流程是:创设情境→激发兴趣→提出问题→故事场景→发现新知→深入探究→网络信息→规律猜想→数字验证→拼图效果→实践应用→拓展提高→回顾小结→整体感知等环节共六个活动来完成教学任务的。在这一过程中,让学生经历了知识的发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想,从而更好地理解勾股定理,应用勾股定理,发展学生应用数学的意识与能力,增强了学生学好数学的愿望和信心。
本节课中的学生对用地砖铺成的地面的观察发现,计算建立在直角三角形斜边上的正方形面积,对直角三角形三边关系的发现,自我小结等,都给学生提供了充分的表达和交流的机会,发展了语言表达和概括能力,增强了合作意识。由展示生活图片,感受生活中直角三角形的应用,引导学生将生活图形数学化。感受到生活中处处有数学。由实际问题:工人师傅要做出一个直角三角形支架,一般会怎么做?引导学生思考:直角三角形的三边除了我们已知的不等关系以外,是不是还存在着我们未知的等量关系呢?调动学生的学习热情,激发学生的学习愿望和参与动机。由学生观察地砖铺成的地面,分别以图中的直角三角形三边为边向外作正方形,求出这三个正方形的面积,尤其计算建立在直角三角形斜边上的正方形面积。
这样学生通过正方形面积之间的关系主动建立了由形到数,由数到形的联想,同时也初步感受到对于直角三角形而言,三边满足两直角边的平方和等于斜边的平方。这样的设计有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。
得出结论后,还要引导学生用符号语言表示勾股定理,如符号语言:Rt△ABC中,∠C=90,AC2+BC2=AB2(或a2+b2=c2),因为将文字语言转化为数学语言是数学学习的一项基本能力。其次,介绍“勾,股,弦”的含义,进行点题,并指出勾股定理只适用于直角三角形;最后介绍古今中外对勾股定理的研究,这样可让学生更好地体会勾股定理的丰富内涵与文化背景,陶冶情操,丰富自我,从中得到深层次的发展。
勾股定理的教学反思 篇25
星期三上午第一节讲了《勾股定理逆定理》第一课时,课后效果和我预想的一样,由于探究内容偏多,课堂容量大,后半部分感觉仓促,留给学生的思考时间显得不足。
回头反思,这节课的设计思路比较合理:定理来源于生活,服务于生活。我由勾股定理引出一道生活实际问题,引起学生的求知欲,然后和学生分三种方法探究,得出“勾股定理逆定理”,经过课堂练习夯实基础,最后利用新知解决开课时提出的生活实际问题,首尾呼应,学以致用。
对互逆命题,原命题,逆命题,互逆定理,逆定理等概念的讲解可随题点化,而详细讲解、随堂练习可做为第二课时的重点,让出更多时间来做勾股定理逆定理的相应练习,特别是应加大有灵活度和难度生活习题的练习,拓宽学生知识面,提高学生的发散思维能力。
总之,课堂设计要做到一个“狠”字,该删除的就删,教学目标不可贪多。我们围绕授课重点做相应探究,练习,次重点可放在下个课时重点讲解,探究时间要预留充足,相应练习宁精勿多,注重双基才是根本。
勾股定理的教学反思 篇26
数学学习中工作量最大的部分就是解数学习题,这也是讲所学基础知识转化为基本技能的必经之路,没有大量习题的跟进是不可能很好的形成基本解题技能的。习题课就是通过各种相关习题的练习,期望能够巩固和深化对所学基础知识的理解和认识,将这些基础知识尽快的转化为基本技能。
今天是第十七章《勾股定理》的一节全章小结部分的习题课,在学生讲解习题的时候,讲的最不好的地方就是这个或这类习题的解题思路和解题的方法,还有就是解题的基本入手点。也就是说很多的孩子,他们在做课后习题的时候,没有在分析、思考各类习题的解题思路或方法或入手点方面投入更多的精力,这一点也是我们的学生学习一直不能有大幅度提高的主要问题,也是制约他们有效学习的基本因素。
新的课程理念把教师的角色定义为“教师是学生学习的组织者、引导者和合作者”,教师的主要作用是组织、引导、参与学生的课堂学习活动。而教师在学生的学习活动中更多的是一种指导的作用,而教师的指导更多的应该侧重于方法、思想的指导。教师必须介入的就是解题的思路和方法。在这一点上应该是必须的。特别是习题课,教师可以完全不讲题,但是在解题方法、思路、入手点这些方面必修介入,以提高学生学习的效率和效果。
另外,学生讲题过程中的语言的运用也需要不断地加以指导,争取能够用较为简练的语言讲清楚一个问题的解决过程。
勾股定理的教学反思 篇27
首先,激发了学生学习数学的兴趣。
一直以来,数学作为一门主要学科,在各阶段考试中都占有重要的地位,而且数学也是自然科学的基础学科,因此学生学习的好与坏,即直接影响的最终成绩,也对其他理科的学习有一定的影响。目前,人们获得数学知识的场所主要在数学课堂,而在中学大多数课堂教学的模式是“教师讲、学生听”的传统教学,教师处于主动地位,学生被动接收知识。教师上课前认真备课,想方设法让学生把问题想清楚。学生课堂上可以走神,对教师讲的问题可认真想,也可不去想,反正最后老师要给出答案的。于是出现了这样一种情况:数学家在“做”数学,数学教师在“讲”数学,而学生在“听”数学。然而数学光靠听,当然学生也就渐渐失去了学习数学的兴趣。都说兴趣是最好的老师,可是传统的数学教学本身就具有抽象性,光靠讲,很难不去乏味。在多媒体的教学环境下,教学信息的呈现方式是立体、丰富且生动有趣的,学生对于如此众多的信息呈现形式,表现出的是强烈的兴趣,真正做到了全方位地调动学生的多种感官参与学习,使抽象的内容变得更具体、易懂,更有利于激发学习兴趣,极大提高学生的参与度。多媒体可以产生一种新的图文并茂、丰富多彩的人机对话方式,而且可以立即对学习的内容掌握情况进行反馈。在这种交互式学习环境中,老师的作用和地位主要表现在培养学生掌握信息处理工具的方法和分析问题、解决问题的能力上。
其次,运用多媒体可以优化教学设计,有利于呈现过程。
传统的数学教学,仅借助一块黑板,一支粉笔、一本书、一张嘴,如此一节课下来,不仅教师累得够呛,学生也不轻松,易产生疲劳感甚至厌烦情绪,使得课堂教学信息传递结构效率较低。而通过多媒体教学,可以为教学提供强大的情景资源,能展示知识发生的过程,注重学生思维能力的培养,多媒体课件采用动态图像演示,具有较强的刺激作用,有助于理解概念的本质特征,促进学生在原有的认知基础上,形成新的认知结构。例如这次上课,我制作了几何画板动画,学生可以自己通过变化图形,得到直角三角形三边的关系,这要比直接上课举例证明更生动,印象更深刻,也更具有说服性。
最后,多媒体教学也有助于提高教师的业务水平和计算机使用能力。
教师要上好一节数学课,必须要认真的备课,需要查阅大量的资料,获取很多信息,去优化教学效果。庞大的书库也只有有限的资源,况且还要找,要去翻。而网络为教师提供了无穷无尽的教学资源,为广大教师开展教学活动开辟了一条捷径,大大节省了教师的备课时间。我们可以在网上下载到很多有助于自己教学的资料,包括教学课件和试卷等。通过网络,我们还可以学习到先进的教学思想、教学理念、教学方法。经常将多媒体信息技术运用到课堂教学的教师,他的教学方法应该总能走到前列。而且在教学中使用多媒体,要求教师有相当的计算机使用能力,也是对我们现代年轻教师个人文化素质提高的锻炼。
当然,网络在上课时,也有一些不方便之处需要去解决。例如数学讲究叙理过程的书写。但是学生的打字输入技能还不能满足,因此网络课的习题都是以填空或者选择为主,书写的锻炼还是要靠纸币去完成。可是,事在人为,任何事情都是可以解决的。我想在科技发展迅速的今天,很快就有新技术去解决这些问题。作为年轻教师,我们要敢于挑战和尝试,在教学中学习,不断提高自身的业务水平。
勾股定理的教学反思 篇28
勾股定理是我们这学期教学中一个非常重要的定理,它揭示了直角三角形的三边之间的数量关系,是典型的数形结合思想的运用,拿着我们初二数学备课组全体老师的精心设计的讲学稿,上完课后,反思不少。本节课的设计主要是根据学生的认知结构,“以画一画、量一量、算一算、证一证、用一用”为主线轴展开教学的,着实体现了知识的发生、形成和发展的过程,真正地让学生体会到观察、归纳、验证的思想和数形结合的思想,探究出勾股定理的内容,并能做到简单地应用,主要成功的地方有:
一、导入新课,设疑巧激趣。
引入2002年在北京召开的国际数学家大会会标,展示“弦图”并设疑,迅速集中了学生的注意力,把学生的思绪带进了特定的学习环境中,激发了全班同学的浓厚兴趣和强烈的求知欲,为本节课的成功创造了有利条件。
二、引导量量、猜猜、证证,有条不紊,思路清晰。
让学生动手画直角三角形,观察、分析,引导学生自己得出结论,再对结论进行科学的论证,用所得的结论解决数学问题。在课堂上,探索目标明确,体现了教学的重点和难点,充分发挥了学生的主体作用,调动了学生的积极性,培养了学生动手操作的能力,体现了以学生为主体的意识,各环节衔接紧密,学生课堂反应好。
三、注重学生的情感目标,实现加强爱国主义教育。
本节课在教学探讨的过程中,还渗透着勾股定理的历史方化背景,激发学生的民族自豪感,促使探索新知识的热情,整个课堂师生和谐,气氛好;师生共同探讨并验证定理,鼓励学生再用其他方法来验证所得的勾股定理结论。
四、课堂上充分体现学生的主体地位,教师是组织者,引导者。
例:在引入拼图验证定理时,学生以前从未接触过,故在教学中我就多给学生适当指导和鼓励,尽量做学生的组织者、合作者。
通过这节课,备课、上课之后,感悟点点滴滴,确实还存在着一些遗憾。
①感觉今天这堂课没有平时上课的气氛那么浓,部分同学认为是录像课,不敢抛头露面,甚至连回答问题的声音都小了很多,故主动提问的人较少。
②讲学稿编设的内容较多,有点欲速则不达的感觉。
勾股定理的教学反思 篇29
本节课主要是以基础知识复习为主,重点是复习勾股定理和勾股定理的逆定理以及它们的简单应用。首先学生回顾这章书的各知识点,教师展示本章书的知识结构框图;接着学生提出疑难点,教师根据学生所提的疑难点以及平常学生在作业中常出现的错误进行有针对性的讲解;然后学生完成针对练习;最后老师根据学生的答题情况进行有针对性的讲评。这节课的流程:知识点回顾、例题展现、针对练习、反馈、巩固、拓展。学生通过讨论、听讲、练习、小结等,进一步巩固了本章的各知识点,同时也解决了学习中的困惑。总的来说,这节课是基本完成了任务,但课堂气氛有点沉闷。如何改进会更好呢?因此引发了我对复习课的一些思考。
1、知识点回顾这个环节,可以让学生自己画知识框架图。很多学生对复习课不重视,因此在上课时可以先进行一次当堂测试,让学生把这章书的两大内容用文字或数学语言写出来,教师根据学生的测试情况进行评价,引起学生的重视。
2、练习题尽量要精简,避免题海战术。
3、在讲例题时,可以请表达能力较好的同学来讲。这样得以调动课堂气氛,也可以培养学生的能力。
4、学生在做巩固练习时,教师应该着重辅导后进生。
5、在讲评练习时学生总是不爱听,因为优生已经懂了,不想听,差生又因为讲解不够详细而听不懂,所以也听不进去。此时可以发挥合作学习小组的作用。教师公布答案后,由每小组中数学成绩较好的同学给同组中的同学进行有针对性的讲评。这样的效果往往比老师在上面讲评的效果好很多。
6、学生的计算能力差是一个不可忽视的问题。
7、把学生常出错的地方展示出来,加深学生的印象,避免再犯同样的错误。
8、学生一定要提前预习这章讲学稿,否则一节课是无法完成这么多内容的。
除此之外,在这节课中还应该加强以下的几个思想的渗透。
一、分类思想
1、直角三角形中,已知两条边,不知道是直角边还是斜边时,应分类讨论。
二、方程思想
1、直角三角形中,当无法已知两边求第三边时,应采用间接求法。
2、灵活地寻求题中的等量关系,利用勾股定理列方程。
三、展开思想
1、几何体的表面路径最短问题,一般展开表面成平面。
2、利用两点间线段最短及勾股定理求解。
勾股定理的教学反思 篇30
星期四上午第三节讲了《勾股定理逆定理》第一课时,课后效果和我预想的一样,由于探究内容偏多,课堂容量大,后半部分感觉仓促,留给学生的思考时间显得不足。
回头反思,这节课的设计思路比较合理:定理来源于生活,服务于生活。我由勾股定理引出一道生活实际问题,引起学生的求知欲,然后和学生分三种方法探究,得出“勾股定理逆定理”,经过课堂练习夯实基础,最后利用新知解决开课时提出的生活实际问题,首尾呼应,学以致用。
怎么避免上述授课时间紧张问题,取得更高的课堂效率呢?我简单谈两点建议,希望各位数学老师以后教此课时得到共勉。
一是在设计探究时应注重简化。我设计了三个探究:探究1是古埃及人用结绳打桩法得到直角;探究2是师生用尺规作图法得到直角;探究3是利用三角形全等的知识通过证明得到直角。现在觉得应把探究2简化,老师就“勾三股四弦五”给学生当堂做尺规作图演示,没有必要再让学生亲自作图,因为教师的演示,效果明显,学生已经理解,达到目标要求,这样就可以节约5分钟时间。
二是对互逆命题,原命题,逆命题,互逆定理,逆定理等概念的讲解可随题点化,而详细讲解、随堂练习可做为第二课时的重点,让出更多时间来做勾股定理逆定理的相应练习,特别是应加大有灵活度和难度生活习题的练习,拓宽学生知识面,提高学生的发散思维能力。
总之,课堂设计要做到一个“狠”字,该删除的就删,教学目标不可贪多。我们围绕授课重点做相应探究,练习,次重点可放在下个课时重点讲解,探究时间要预留充足,相应练习宁精勿多,注重双基才是根本。
勾股定理的教学反思 篇31
今后的教学中:
(1)立足教材,钻研教学大纲的要求;试卷中较多题目是根据课本的题目改编而来,从学生的考试情况来看课本的题目掌握不理想,这说明在平时的教学中对书本的重视不够,过多地追求课外题目的训练,但忽略学生实实在在地理解课本知识,提高思维能力。课堂上尽量把课堂还给学生,让学生积极参与到课堂中,多机会给学生展示,表演,讲题,把思路和方法讲出来,使学生更清淅地理解题目,提升自己对数学的理解。多点让学生独立思考,发现问题,解决问题。
(2)注重培养学生良好的学习习惯。
(3)加强例题示范教学,培养学生解题书写表达。
(4)多一些数学方法、数学思想的渗透,少一些知识的生搬硬套。
(5)在数学教学过程中,课堂上系统地对数学知识进行整理、归纳、沟通知识间的内在联系,形成纵向、横向知识链,从知识的联系和整体上把握基础知识。
(6)针对学生的两极分化,加强课外作业布置的针对性。让每个学生课外有适合的作业做,对不同层次的学生布置不同难度的作业,提高课外学习的效率,减轻学生课外作业的负担。正确看待学生学习数学的差异,克服两极分化。数学课堂上多考虑、关照中下生,让他们在数学课堂上听得进,肯用手。
(7)教师在平时的课堂教学中必须致力于改变教师的教学行为和学生的学习方式,加强学法指导,提高学生的阅读能力,平时培养学生的自学能力,使学生实实在在地理解课本知识,提高思维能力。平时要关注课本、关注运算能力、关注教学中的薄弱环节。
相关文章
正负数六年级上册数学教学反思2023-07-07 03:20:44
一年级下册数学找规律教学反思(精选五篇)2023-07-19 07:42:16
大班科学优质课教案及教学反思摩擦力2023-07-09 22:23:07
春天举行音乐会语文教学反思(精选六篇)2023-07-17 18:11:45
从军行优秀教学反思2023-07-16 01:46:51
猴王出世教学反思(精选11篇)2023-07-12 08:28:45
上海对外经贸大学和北京交通大学(威海校区)对比哪个好(排名分数线区2024-05-05 08:38:37
河北高考排名237950名物理能上什么大学(能报哪些学校)2024-05-05 08:32:42
山东城市建设职业学院在山东招生人数和招生计划 多少人2024-05-05 08:28:35
上海农林职业技术学院在湖南招生人数和招生计划 多少人2024-05-05 08:26:11
吉林农业科技学院在湖南招生人数和招生计划 多少人2024-05-05 08:22:38
安徽高考多少分可以上云南经贸外事职业学院 招生人数和最低分2024-05-05 08:18:11
云雀的心愿教学反思(十五篇)2023-07-20 04:10:21
四年级数学小数的读法和写法教学反思范文2023-07-15 12:47:17
部编版五年级语文教学反思(精选六篇)2023-07-16 23:06:28