北考网

《3的倍数特征》教学反思

时间:2023-07-13 03:22:38 文/李盛 教学反思北考网www.beiweimall.com

《3的倍数特征》教学反思1

  《3 的倍数和特征》一课是在学生自主探究2、5的倍数的特征的基础上进一步学习,我从学生的已有基础出发,把复习和导入有机结合起来,通过2、5的倍数特征的复习,设置了“陷阱”,引导学生进行猜想3的倍数的特征可能是什么,从而引发认知冲突,激发学生的求知欲望,经历新知的产生过程。

  一、引发猜想,产生冲突。

  前一课时,学生在发现2、5的倍数特征时,都是从个位上研究起的,所以在复习旧知时,我也特意强调了这一点。接下来我引导学生猜想3 的倍数特征是什么时,不少学生知识迁移,提出:个位上是3、6、9的数应该是3 的倍数;3 的倍数都是奇数。提出猜想,当然需要验证,很快就有学生在观察百数表后提出问题:个位上是3、6、9的数只是有些是3的位数,有些不是3的倍数;有些偶数也是3的倍数,而有些奇数却不是3 的倍数。学生的第一猜想被自己否决了。既然没有这么明显的特征,那么在百数表里找出3的倍数,不少学生就开始了繁杂的计算,这个环节我给了他们时间慢慢去算,用意在于体会这种计算的不方便,从而去想有没有更好的方法去判断一个数是否是3 的倍数。

  二、自主探究,建构特征

  找3 的倍数的特征是本节课的难点,我处理这个难点时力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,始终为学生创造宽松的学习氛围,让学生自主探索并掌握找一个3的倍数的特征的方法,引导学生在充分的动口、动手、动脑中自主获取知识。

  在完成100以内的数表中找出所有3 的倍数后,我引导学生观察发现3的倍数的个位可以是0~9中任何一个数字,要判断一个数是不是3的倍数不能和判断2、5的倍数一样只看个位,打破了学生的认知平衡,然后我提出到底什么样的数才是3的倍数这一问题。这个问题的解决需要借助计数器,于是我给学生准备了简易计数器,让学生多次拨数后,观察算珠的个数有什么共同的特点。反应比较快的学生就有了发现:所用的算珠个数都是3 的倍数。在学生提出这个猜想后,全班学生再一次进行验证第二个猜想,这个验证也是在突破难点,学生在验证中掌握难点。同时,我也让学生对比了之前所用的方法,体验这个新方法的快捷与简便,让学生的印象更深刻。这个教学环节在教师的引导下克服困难,解决了力所能及的问题,达到了新的平衡,开发了学生的创新潜能。

  在教学过程中让学生自主探索,虽然用了很多时间,但我认为学生探索的比较充分,学生的收获会更多。

  三、巩固内化,拓展提高。

  在上述教学过程中,虽然每个同学只操作了一两次,但是通过学生之间的合作交流,在教师的引导下,学生经历了一个典型的通过不完全 归纳的方法得出规律的过程。学生在这一过程中的体验,无论是方法层面,还是思想层面均将对后继的学习产生深刻的影响。

  在初步感知3 的倍数的特征后,我提出了问题:一个数,在计数器上拨出它,所用数珠的颗数是3的倍数,它就是3的倍数,对吗?你是否认为我们研究出的结论对所有的数都适用呢?这两个问题的提出,意义在于通过“更大的数”和“任意找”两方面,使学生深切体验了不完全归纳法的这一要义,同时也培养了学生缜密思考问题的意识和习惯。

《3的倍数特征》教学反思2

  《3的倍数的特征》的教学是五下数学第二单元“因数与倍数”中一个知识点,是在学生已认识倍数和因数、2和5倍数的特征的基础上进行教学的。由于2、5的倍数的特征从数的表面的特点就可以很容易看出——根据个位数的特点就可以判断出来。但是3的倍数的特征却不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。因而在《3的倍数的特征》的开始阶段我复习了2、5的倍数的特征之后就让学生猜一猜什么样的数是3的倍数,学生自然而然地会将“2。5的倍数的特征”迁移到“3的倍数特征的问题中, 得出:个位上是3、6、9的数是3的倍数,后被学生补充到“个位上是0—9的任何一个数字都有可能是3的倍数,”其特征不明显,也就是说3的倍数和一个数的个位数没有关系,因此要从另外的角度来观察和思考。

  在问题情境中让学生产生认知冲突,萌发疑问,激发强烈的探究欲望。接着提供给每位学生一张百数表,让他们圈出所有3的倍数,抛出问题:把 3 的倍数的各位上的数相加,看看你有什么发现,引导学生换角度思考3的倍数特征 。学生在经历了猜测、分析、判断、验证、概括、等一系列的数学活动后感悟和理解了3的倍数的特征,引导学生真正发现:3的倍数各位上数的和一定是3的倍数;不是3的倍数各位上数的和一定不是3的倍数。从而,使学生明确3的倍数的特征,然后进行练习与拓展。这样的探究学习比我们老师直接教给他们答案要扎实许多,之后的知识应用学生就相应比较灵活和自如,效果较好。

  这节课结束后,我感觉最大的缺憾之处在最后的拓展练习上,由于自己事先练习下水没有做足,所以误导了学生。题目如下:“从3、0、4、5这四个数中,选出两个数字组成一个两位数,分别满足以下条件:1、是3的倍数。2、同时是2和3的倍数。3、同时是3和5的倍数。4、同时是2、3和5的倍数。”学生问要写几个时,我回答如果数量很多至少写3个。呵呵,其实此题不需要如此考虑,因为它们的数量都有限。

  希望以后自己的教学会更扎实起来。

《3的倍数特征》教学反思3

  《3的倍数的特征》的教学是五年级数学上册第三单元“因数与倍数”中一个重要知识点,是学生在学习了2和5的倍数特征之后的新内容。

  3的倍数的特征与2和5的倍数的特征有很大差别,2和5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我在本节课设计理念上,突出以学生为主体,教师为主导,方法为主线的原则,从现象到本质,从质疑到解疑。当然本节课也存在很多问题,下面我进行做几点反思。

  1、瞄准目标,把握关键

  在导入环节,我通过复习旧知识进行“热身”。由于学生已经掌握了2和5倍数的特征,知道只要看一个数的个位就能判断一个数是不是2或5的倍数,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来,尽管是负迁移。实际上,鲜明的冲突让学生发现却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。

  2、经历过程,授之以渔

  猜想3的倍数特征是基础,在学生得出猜想后,我便引导学生找出百数表中3的倍数去验证,并在验证中推翻了刚才的猜想。验证也是有技巧的,30以内即可发现3的倍数中,个位上可能是10个数字中的任何一个,之前的判断已经站不住脚。之后继续探究,在100以内,基本可以发现规律,但为了严谨,必须跳出百数表,在100以上的数中去验证这个规律。最后,引导学生理解这个结论背后的原理,为什么它的规律和之前的规律不一样?这样一来,学生不仅学会本节课知识,更掌握了科学的探究方法。

  3、追求本真,知其所以然

  本节课的目标定位上,我考虑到学生的已有认知基础,我决定引导学生探索3的倍数的特征背后的道理。这一尝试建立在我对学生学情把握的基础上,因为3的倍数的特征的结论一但得出,运用起来没有难度,后面的练习往往成了“休闲时间”,而进一步提升探索难度,无疑是开发思维的良好契机。我运用数形结合的方法逐步深入,最后还是把话语权留给学生,这样就给予不同学生各自适应的个性化学习方略,真正做到了让每位同学在数学上都得到发展。

《3的倍数特征》教学反思4

  3的倍数的特征比较隐蔽,学生一般想不到从“各位上数的和”去研究。上课开始先让学生回顾旧知:2的倍数和5的倍数有什么特征?学生们发现都只要看一个数个位上的数就行了,于是很顺利地设下了陷阱:“同学们,那猜猜看3的倍数有什么特征呢?猜测是一种常用的数学思考方法,让学生猜测3的倍数有什么特征,能较好地调动学生的学习积极性。由于受2的倍数和5的倍数的特征的影响,有学生很自然猜测到“个位上是0,3,6,9的数一定是3的倍数”,还有学生猜测“个位上的数字加起来是3,6,9一定是3的倍数”,能想到这点应该说是了不起的。本课到这里都很顺利,因为完全在我的预设之中。

  下面进入验证环节,先让学生判断自己的学号是不是3的倍数,再在这些学号中挑出个位上是0,3,6,9的数,通过交流,学生发现这些数不一定是3的倍数。学生初步发现了3的倍数的特征与2和5的倍数不同,不表现在数的个位上,那3的倍数究竟与什么有关系呢?于是进入到动手操作环节。在此基础上,抽象成各位上数的和,是理解3的倍数特征的关键。

  “试一试”是数学的第三步,如果一个数不是3的倍数,那么这个数各位数的和不是3的倍数,利用反例进一步证实3的倍数的特征,体现了数学的严谨性和数学结论的确定性。随后设计了一系列习题,使学生得到巩固提高。

《3的倍数特征》教学反思5

  《3 的倍数的特征》本节课的教学活动,注重学生实践操作,展开探究活动,组织学生进行交流和探讨,注重培养学生发现问题,解决问题的能力,让学生经历科学探索的过程,感受数学的严谨性和数学结论的`正确性。我是从教学环节维度进行观课的,本节课有五个环节包括:一、复习旧知,直接导入。二、自主探究,合作验证。三、总结提升,共同验证。四、运用结论,巩固训练。五、全课小结,课后延伸。每个环节环环相扣,设计合理。下面就说一下自己的想法。

  一、以旧带新,引入新课。

  赵老师先复习了2、5的倍数的特征,为这节课的学习打下了基础。赵老师以学生原有认知为基础,激发学生的探究欲望,利用学生刚学完“2、5的倍数的特征”迁移到“3的倍数的特征”的问题中,由此萌发疑问,激发强烈的探究欲望,因此学生很快进入问题情境,猜测、否定、反思、观察、讨论,使得大部分学生渐渐进入了探究者的角色。

  二、亲身经历,探索规律。

  本节课教师努力尝试构建数学生态课堂,让学生继续利用小棒摆一摆,进而发现不止是3根、6根小棒能摆出3的倍数,9根也能“只要小棒的根数是3的倍数,摆出来的数就是3的倍数。”教师将“动手摆小棒”升级为“脑中拨计数器”,将“直观性思维”升华为“理性思维”,通过小组交流、集体验证,学生的探索发现离“3的倍数的特征”只有咫尺之遥。整节课让学生经历“动手操作——观察发现——举例验证——归纳总结”的探究过程,实现课程、师生、知识等多层次的互动。

  三、精心选题,巩固新知。

  习题的设计力争在突出重点,突破难点,遵循学生认知规律的基础上,体现基础性、层次性、灵活性、生活性、趣味性。本节课教师设计了3道练习题。在巩固练习部分,第(1)、(2)题是基本题;第(3)题,教师努力拉近数学与生活的联系。把数学和生活有机联系起来,使学生体会到数学在现实生活中作用和价值,初步学会用数学的眼光去观察事物、思考问题,树立学好数学、用好数学的志趣。

  四、回顾梳理,举一反。

  在学生学习的过程中注意“学习方法”的指导,让学生感受到掌握方法才能举一反三,真正做到触类旁通。最后一个环节设计了让学生静静的回顾这节课的学习历程“动手操作——观察发现——举例验证——归纳总结”,使其在数学思想上做进一步的提升。

《3的倍数特征》教学反思6

  本节课探究3的倍数的特征之前,我还是先让学生写出50以内3的倍数,然后让学生观察这些数有何特征,大部分同学找不着规律,个别同学可能是受上节课的影响,说出了:个位上是0、1、2、3、4、5、6、7、8、9的数就是3的倍数,但马上就被其他同学推翻了。

  然后我就出示计数器,依次拨出3的倍数,让学生观察一共用了几颗珠子,让学生体会到有几颗珠子就是各个数位上数的和,发现珠子的颗数正好是3的倍数,也就是各个数位上数的和是3的倍数,那么这个数就是3的倍数。说实话,学生对于这一规律,不是很容易接受,在后来的练习中,才慢慢体会到。

  “想想做做”的五道题设计得比较好,体现了分层,特别是最后一道,学生通过交流讨论后,得出了先选数后组数的思路,练习的效果比较好。

《3的倍数特征》教学反思7

  心理学原理表明,新异的刺激可以引起学生的注意和兴趣。在教学中,根据不同的教材和要求,采取不同的教学方法,能够引起学生学习的兴趣,有利于创设良好的课堂气氛。

  教学3的倍数特征这一课时,教师组织学生进行下列巩固练习:

  下列数中3的倍数有:()

  1435451003328767488

  学生利用3的倍数的特征一下子就回答了上面的问题,得到了老师的肯定。这时我接着说:“我们来一场老师、学生打擂台怎么样?看谁说的3的倍数的数最多,我们看谁能考倒老师。”这时同学们兴趣盎然,纷纷出题来考老师。

  生:42

  师:111

  生:78

  师:57

  生:81

  师:20xx

  生:6891

  …………

  这时师故意出错:369041

  学生马上发现了这个数不是3的倍数,师问:“你能不能改一改其中的某个数字使它成为3的倍数。”

  生:“可以将1改为2。”

  生:“可以将4改为5。”

  生:“可以将1改为5。”

  生:“可以将1改为8。”

  生:“可以将4改为2”

  生:“可以将4改为8”

  学生回答完后,我及时提问:“你们为什么不改其中的3、6、9和0呢?”学生通过思考回答:“因为0、6、3、9每一个数都是3的倍数,所以只要改4和1这两个数就行了。”这时我及时指出:“判断一个数是不是3的倍数可以用筛选法来判断,在各数位的数字中先筛去3的倍数或和为3的倍数的数字,若余下的数字之和是3的倍数,原数就是3的倍数,否则就不是。”这时我逐渐地出示下列这组数要求学生马上判断是否3的倍数。

  56

  561

  5617

  56178

  561784

  5617849

  …………

  这个巩固练习,有效地调动了学生的积极性,不断激起学生认知的内驱力,使学生在探索的过程中,主动学习、主动探索,带来了内心的满足感。

《3的倍数特征》教学反思8

  今天我教学了3的倍数的特征,我首先复习2、5的倍数的特征,然后我出示了几个不同的四位数,问生:谁能很快判断出哪些是3的倍数?想知道有什么窍门吗?这们引入课题很顺当,学生也很有兴趣。下面,我先让学生写出50以内3的倍数,再观察:3的倍数有什么特点?学生一时很难发现,仍从个位上的数去观察,但马上被其他同学否定,当时我心里有点担心怎么看不来呢?,我启发学生再看看个位和十位上的数,通过交流后,在部分学生马上发现把每个数的数字加起来的和除以3都是正好除的,我让学生用这个发现对书上第76页的表格100以内的数进行验证一下,学生验证后我又让学生从100以外的数来验证。从而得出了3的倍数的特征。再通过用1、2、6可以写成哪些三位数?这些三位数是3的倍数吗?由此有什么发现?让学生进一步明白3的倍数跟数字的位置没有关系,只跟各位上数的和有关系。这样学生在完成想想做做第5题时学生思考时就不会漏写了。最后,通过后面的练习,我觉得在教学某些知识时,最好老师不要轻易下结论,只有让他们自己在反复实践中自己得出结论,才能牢固地掌握知识。

《3的倍数特征》教学反思9

  【初次实践】

  课始,让学生任意报数,师生比赛谁先判断出这个数是不是3的倍数,正当我沉浸在游戏的情境之中,几个“不识时务者”打乱了课前的预想。“老师,我知道其中的秘密,只要把各个数位上的数加起来,看看是不是3的倍数就行了!”“对!在数学书上就有这句话。”……又有几个学生偷偷地打开了数学书。“怎么办?”谜底都被学生揭开了。面对这一生成,我没有死守教案,而是果断地调整了预设,变“探索”为“验证”,将结论板书在黑板上,让学生理解这句话的意思,然后组织学生将百数表中3的倍数圈出来,验证是不是具有这样的特征,最后进行一系列巩固练习……

  [反思]

  课堂上经常会出现类似上述案例中的“超前行为”,即有些学生提前把要探究的新知识和盘托出。我们的习惯做法就是变“探索”为“验证”,当然有些知识的教学采用这种方式是有效的,然而本课中“验证”的过程真能取代“探究发现”的过程吗?仅仅举几个例子试一试,验证方法单一,思维含量低,学生充其量只能算是执行操作命令的“计算器”,又能获得哪些有益的发展?如果经常进行这样的教学,还容易使学生形成浮躁浅薄,不求甚解,甚至只要结论的不良学习风气。怎么办,置之不理吗?如果这样,不仅没有尊重学生已有的知识经验,而且在已经揭开“谜底”的情况下,再试图引导学生进行猜想、实验、发现,体验遭受挫折后取得成功的那种激动,也只能是一种奢望。那么又该如何激发学生探究的热情,促使学生进行深入探究呢?

  【再次实践】

  (与第一次教学情况基本相同,有些学生能够正确地判断一个数是不是3的倍数,这时一些学生却依然感到困惑,我设法将这一困惑激发出来。)

  师:同学们真能干,这么快就知道了3的倍数的特征,上节课我们学习了2、5的倍数的特征只和什么有关?

  生:只和一个数的个位有关。

  师:与今天学习的知识比较一下,你有什么疑问吗?

  生1:为什么判断一个数是不是3的倍数只看个位不行?

  生2:为什么判断一个数是不是2、5的倍数只看个位,而判断是不是3的倍数要看各位上数的和?

  ……

  师:同学们思考问题确实比较深入,提出了非常有研究价值的问题。那我们先来研究一下2、5的倍数为什么只和它的个位有关。

  (学生尝试探索,教师适时引导学生从简单数开始研究,借助小棒或其他方法进行解释。)

  生1:我在摆小棒时发现,十位上摆几就是几十,它肯定是2、5的倍数,因此只要看个位摆几就可以了。

  生2:其实不用摆小棒也可以,我们组发现每个数都可以拆成一个整十数加个位数,整十数当然都是2、5的倍数,所以这个数的个位是几就决定了它是否是2、5的倍数。

  师:同学们想到用“拆数”的方法来研究,是个好办法。

  生3:是否是3的倍数只看个位就不行了。比如13,虽然个位上是3的倍数,但10却不是3的倍数;12虽然个位不是3的倍数,但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的数和个位上的数合起来是不是3的倍数就行了。

  生4:我也是这样想的,我还发现十位上余下的数正好和十位上的数字一样。

  生5:(面带困惑)起初,我也是这样想的,可是在试三十几、四十几时就不行了。余下的数和十位上的数不一样了,比如40除以3只余1,余下的数就和十位数字不同。

  生(部分):对。

  生4:其实40不要拆成39和1,你拆成36和4,余下的数不就和十位数字相同了吗?

  生6:也就是说整十数都可以拆成十位上的数字和一个3的倍数的数。这样只要看十位上的数和个位上的和是不是3的倍数就可以了。

  师:同学们确实很厉害!那三位数、四位数是不是也有这样的规律呢?

  学生用“拆数”的方法继续研究三、四位数,发现和两位数一样,只不过千位、百位上余下的数要依次加到下一位上进行研究。3的倍数的特征在学生头脑中越来越清晰。

  师:同学们通过自己的探索,你们不仅发现了3的倍数的特征,还弄清了为什么有这样的特征。现在你还有哪些新的探索想法呢?

  生1:我想知道4的倍数有什么特征?

  生2:我知道,应该只要看末两位就行了,因为整百、整千数一定都是4的倍数。

  师:你能把学到的方法及时应用,非常棒!

  生3:7或9的倍数有什么特征呢?

  ……

  师:同学们又提出了一些新的、非常有价值的问题,课后可以继续进行探索。

  [反思]

  1. 找准知识间的冲突,激发探究的愿望。学生刚刚学习了2、5的倍数的特征,知道只要看一个数的个位,因此在学习3的倍数的特征时,自然会把“看个位”这一方法迁移过来。而实际上,3的倍数的特征,却要把各个位上的数加起来研究。于是新旧知识之间的矛盾冲突使学生产生了困惑,“为什么2或5的倍数只看个位?”“为什么3的倍数要把各个位上的数加起来研究?”……学生急于想了解这些为什么,便会自觉地进入到自主探究的状态之中。知识不是孤立的,新旧知识有时会存在矛盾冲突,教师如能找准知识间的冲突并巧妙激发出来,就能激起学生探究的愿望。这样不仅有利于学生对新知的掌握,有效地将新知纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。

  2. 激活学习中的困惑,让探究走向深入。创造和发现往往是由惊讶和困惑开始。对比两次教学,第一次教学由于忽视了学习中的困惑,学生对于3的倍数的特征理解并不透彻,探索的体验也并不深刻。第二次教学留给学生质疑的时空,巧设冲突,让学生进行新旧知识的对比,将困惑激发出来,通过学生间相互启发、相互质疑,对问题的思考渐渐完整而清晰。学生不但经历由困惑到明了的过程,而且思维不断走向深入,获得了更有价值的发现,探究能力也得到切实提高。学生在学习中难免会产生困惑,这种困惑有时是学生希望理解更全面、更深刻的表现。面对这些有价值的思考,我们要有敏锐的洞察力,采取恰当的方法将其激活,促使探究活动走向深入,让学生获得更大的发展。当然,学生在学习中可能产生怎样的困惑,面对这一困惑又该如何恰当引导,尚需要教师课前精心预设。

  3. 沟通知识间的联系,让学生不断探究。显然,2、5的倍数的特征与3的倍数的特征是相互联系的,其研究方法是相通的(都可以通过“拆数”进行观察),特征的本质也是相同的。这种研究方法和特征本质的及时沟通,激发了学生继续研究4、7、9……的倍数的特征的好奇心,促使学生不断探究,将学习由课内延伸到课外,并在探究过程中建构起对数的倍数特征的整体认识,感悟数学其实就是以一驭万,以简驭繁。课堂不是句号,学生的发展始终是教学的落脚点。我们的教学绝不能仅仅局限于学生对于一堂课知识的掌握,而应着眼于学生对于解决问题方法的感悟,获得可持续发展的动力。

《3的倍数特征》教学反思10

  《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。

  一、猜想:让学生回顾旧知,2的倍数和5的倍数有什么特征,学生们发现都只要看一个数个位上的数就行了,于是很顺地设下了陷阱:同学们,那猜猜看3的倍数有什么特征呢?由于受2的倍数和5的倍数的特征的影响,有学生很自然猜测到:“个位上是0,3,6,9的数一定是3的倍数”。

  二、验证::先让学生在百数图中找找看,显然像13、16、19等等的数不是3的倍数,学生初步发现了3的倍数的特征与2和5的倍数不同,不表现在数的个位上,那3的倍数究竟与什么有关系呢。

  三、探究:在此基础上,让学生在百数图中找出3的倍数的数,如果把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

  12→2115→5118→8124→4227→72

  我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

  如果把3的倍数的各位上的数相加,它们的和是3的倍数。

  四、验证:下面各数,哪些数是3的倍数呢?

  2105421612992319876

  小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。这样结论的得出水到渠成。

《3的倍数特征》教学反思11

  在执教《2、5、3的倍数的特征》后,我针对本节课的教学情况进行反思。

  一、跨年级学习新数学知识,知识衔接不上,不符合学生的认知规律。

  虽然2、5、3的倍数的特征看起来很简单,探究的过程可能没有什么困难之处,但要内容让学生学懂,首先存在知识衔接问题,整除、倍数、因数这些概念学生都从未接触过,因此,我在课开始安排了整除、倍数、因数新概念的介绍,在我看来,这些概念比较抽象,学生一时难以掌握。

  二、为了体现“容量大”,教学延堂。

  备课时也参考了不少资料,大多数教学设计都是将这一内容分成两节课来学习,一节学《2、5的倍数的特征》,一节学《3的倍数的特征》,我确定用一节课教学《2、5、3的倍数的特征》,其目的是为了体现容量大,我的设计内容多,相应的学生自学、展示、巩固练习的时间和机会就压缩的比较少了。而3的倍数的特征与2、5的又完全不同,学生接受起来可能会有一定的难度,最好单独作为一课时学习。最后的环节达标测试拖堂了。

  三、学生合作学习的效果较好,但展示未体现立体式。

  高效课堂要充分发挥学生的主体作用,要体现学生会学,学会,在本节课上,学生合作学习的热情高,通过展示,发现学生学懂了,总结出了2、5、3的倍数的特征,在展示环节,学生讲的、板书的相互干扰,于是,我临时安排按先后顺序进行,没体现出高效课堂的“立体式”这一特点。

《3的倍数特征》教学反思12

  3的倍数的特征的教学与2、5倍数的特征难度上有不同,因为2、5的倍数的特征从数的表面的特点就可以很容易看出(根据个位数的特点就可以判断出来),但是3的倍数的特征却不能从表面去判断,因而我特设以下环节突破重难点预习题。

  1、给出一些数让学生先判断哪些数是3的倍数。并让学生说一说你是怎么判断的?

  2、从以上的3的倍数进行思考:

  (1)、3的倍数与它个位上的数有关系吗?

  (2)、 3的倍数的各位上的数的和都是3的倍数吗?

  新课时让学生从上面的练习中去发现了什么,从而归纳3的倍数的特征:一个数的各个数位上的数字和是3的倍数,这个数就是3的倍数

  然后再让每个同学任意写一个3的倍数,再看看这个数的各个数位上的数的和是不是3的倍数。要求学生说出方法和思路。

  经过以上这些活动后学生都能对一个数是不是3的倍数进行简单的判断。特别是学生对3的倍数特征的判断大多数的学生能先求出各个数位的数字之和是不是3的倍数,然后再进行判断,效果很好。

《3的倍数特征》教学反思13

  1.以学生原有认知为基础,激发学生的探究欲望。教师利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到解决“3的倍数特征”的问题,产生认知冲突,萌发疑问,激发强烈的探究欲望。本案例中,学生很快进入问题情境,猜测、否定、反思、观察、讨论,大部分学生渐渐进入了探究者的角色。

  2.以问题为中心组织学生展开探究活动。在上面案例中,教师注意突出学生的主体地位,教师依据学生年龄特征和认知水平设计具有探索性的问题,引导学生紧紧围绕“3的倍数有什么特征”这个问题来开展学习活动,指导学生围绕问题展开探究活动,并不断组织师生之间、生生之间的交流和讨论,逐步发现、归纳规律、得出结论,培养了学生的探索意识和分析、概括、验证、判断等能力。

《3的倍数特征》教学反思14

  “能被3整除数的数”一课,能体现新的教育理念、教育思想。仔细分析,有以下几个特点:

  1、确立了基本技能目标和发展性目标并重的教学目标。

  本节课不仅重视学生掌握能被3整除数的特征,并能运用特征进行正确判断,同时十分重视学生学习过程的体验和方法的渗透,让学生通过“猜测——验证——提出新的假设——验证”的探索过程来发现知识,获得结论,并感悟方法。

  2、理性处理教材,使教学内容生活化。

  教科书只是提供了学生学习活动的基本线索。教学中,教师要充分发挥主观能动性,创造性的使用教科书,本节课重新设计例题,通过用“0——9”十个数字组成能被整除的三位数让学生探索特征,这样处理使教学内容有较强的灵活性,促进了学生思维的发展。教学内容生活化不仅能激发学生兴趣,产生亲切感,而且使学生认识到现实生活中蕴藏着丰富的数学问题。开课时收集的数据一方面激发了学生学习的兴趣,同时也缩短了教师和学生的距离,课后“你再长几岁,这个岁数就能被3整除”这一开放题富有情趣,给学生留下了深刻的印象。

  3、着力改变学生的学习方式。

  学习方式的转变是本节课的主要特色。本节课始终以自主探索、合作交流为主要的学习方式,让学生通过自主选教学内容,举例验证等独立思考和小组讨论等合作探究活动,获得教学知识、感悟方法。如在课的第二阶段,设计三个层次的教学活动,让学生充分探索、讨论、交流,使学生真正成为学习的主人。第一层通过学生猜测、举例、选数字组数,使学生产生两次认知冲突;第二层通过交换三位数数字的位置,仍然没能发现特征,产生第三次认知冲突;第三层次通过计算各位上的数的“和、差、积、商”使结论逐渐显露。这一过程不仅培养了学生探究精神,磨练了意志,同时也使学生品尝了成功的喜悦。

  4、合理定位教师角色,营造民主、和谐的学习氛围。

  课堂教学中只有摆正了师生关系,才可能使学生得到发展。本节课学生始终是数学学习的主人,教师是数学学习的组织者、引导者和合作者。可以从以下两方面看出:一是从师生活动的时间分配上,二是从分层探究、有针对性的适当引导上。这节课从开始到结束,气氛始终处在民主、和谐之中,生活化的学习材料、平等的师生关系和开放的探究方式,

《3的倍数特征》教学反思15

  《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。

  我从学生的已有认知出发,引导学生先进行合理的猜想,进而引发学生从不同的角度验证自己的猜想,通过验证,学生自我否定了自己的猜想。此时学生处于“不愤不启”的最佳的学习状态,他们迫切想知道3的倍数的特征究竟是什么?这样来调动学生学习的欲望,增强学生主动探究意识,有利于后面的探究学习。他们还认为在我们实际生活中,当你解决一个新问题时,一般没有人告诉你解决这个问题会碰到什么困难。你只有碰到问题后,在解决问题的过程中方才清楚还需要哪些知识,然后,你要在原来的知识库中去提取并灵活地应用原有的知识。

  新课堂呼唤“自主、合作、探究”,而真探究必然伴随大量差错的生成,学生总会出现各种各样的错误,我们的课堂教学不应该有意识地去避免学生犯错误。因为课堂是学生出错的地方,出错是学生的权利,学生的错误是劳动的成果,关键是要看我们教师如何看待学生的错误,有个教育专家说得好:“课堂上的错误是教学的巨大财富”。因此,我们教师在课堂中要有沉着冷静的心理、海纳百川的境界和从容应变的机智,给学生一个出错的机会和权利。

相关文章

数学课三角形的分类的教学反思2023-07-13 07:45:13

关于赵州桥的教学反思范文(通用六篇)2023-07-09 14:58:56

小公鸡和小鸭子教学反思范文(精选五篇)2023-07-07 18:11:33

轴对称图形教学反思范文2023-07-09 11:02:56

吃掉黑暗的怪兽教学反思范文2023-07-08 02:39:12

龟兔赛跑的教学反思2023-07-08 16:50:28

上海对外经贸大学和北京交通大学(威海校区)对比哪个好(排名分数线区2024-05-05 08:38:37

河北高考排名237950名物理能上什么大学(能报哪些学校)2024-05-05 08:32:42

山东城市建设职业学院在山东招生人数和招生计划 多少人2024-05-05 08:28:35

上海农林职业技术学院在湖南招生人数和招生计划 多少人2024-05-05 08:26:11

吉林农业科技学院在湖南招生人数和招生计划 多少人2024-05-05 08:22:38

安徽高考多少分可以上云南经贸外事职业学院 招生人数和最低分2024-05-05 08:18:11

云雀的心愿教学反思(十五篇)2023-07-20 04:10:21

四年级数学小数的读法和写法教学反思范文2023-07-15 12:47:17

部编版五年级语文教学反思(精选六篇)2023-07-16 23:06:28